Skip to Content
Merck
All Photos(1)

Key Documents

912190

Sigma-Aldrich

Hydroxyapatite granules

0.5-1.0 mm grain size

Synonym(s):

Apatite hydroxide, Ca10(PO4)6(OH)2, Hydroxyapatite, Hydroxylapatite, Pentacalcium hydroxide triphosphate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ca10(PO4)6(OH)2
UNSPSC Code:
12352305
NACRES:
NA.23

form

solid

Quality Level

grain size

0.5-1.0 mm

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

Handling:
Avoid contact with eyes and skin. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at place where dust is formed.

Storage:
Keep store in clean, dry place. Keep work area free of spills. Keep the container tightly closed. Avoid freezing
Hydroxyapatite and tricalcium phosphate are bioactive ceramic materials and they find applications as bone grafts, fillers and coating material for metal implants.

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties.
Li Y, et al.
Carbon, 67, 250-259 (2014)
Sahar Vahabzadeh et al.
Acta biomaterialia, 17, 47-55 (2015-02-02)
In this work we have investigated the effects of strontium (Sr) dopant on in vitro protein release kinetics and in vivo osteogenic properties of plasma sprayed hydroxyapatite (HA) coatings, along with their dissolution behavior. Plasma sprayed HA coatings are widely
Lu Xie et al.
Materials science & engineering. C, Materials for biological applications, 59, 1007-1015 (2015-12-15)
The ideal bone tissue engineering scaffolds are long-cherished with the properties of interconnected macroporous structures, adjustable degradation and excellent biocompatibility. Here, a series of porous α/β-tricalcium phosphate (α/β-TCP) biphasic bioceramics with different phase ratios of α-TCP and β-TCP were successfully
Sophie C Cox et al.
Materials science & engineering. C, Materials for biological applications, 47, 237-247 (2014-12-11)
A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service