921637
Reaction chamber chip - 6 μl
Fluidic 132, COP
Synonym(s):
Microfluidic chip
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
description
Microfludic chip x1
Application
Chamber chips come in the format of a microscopy slide (75.5 mm x 25.5 mm x 1.5 mm) and are equipped with Mini Luer interfaces. Their key microfluidic elements are reaction chambers of various volumes. Chamber chips are the perfect tool to facilitate reactions, such as amplification of a targeted DNA during qPCR, or to extract target molecules out of a given sample in preparative quantities. These chips can, for example, be used as nucleic acid extraction devices via magnetic beads simply via applying beads and sample and by using an external magnet to hold the beads in place. These procedures can be done completely manually with a pipette – besides the magnet no additional equipment is necessary – or semi-automated with normal peristaltic pumps found in most life science labs.
Reaction chamber chip - 6 μl, Fluidic 132, COP is made of COP (Cyclic olefin polymer) and offers rhombic chambers with two inlets and two outlests. These chips are versatile tools for various experimantal procedures such as sample preparation.
Chip Properties:
Reaction chamber chip - 6 μl, Fluidic 132, COP is made of COP (Cyclic olefin polymer) and offers rhombic chambers with two inlets and two outlests. These chips are versatile tools for various experimantal procedures such as sample preparation.
Chip Properties:
- Orientation: Crosswise
- Mini Luer Interface
- Material: Cyclic olefin polymer (COP)
- Chamber Volume: 6μl
- Chamber Depth: 200μm
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Recent advances of controlled drug delivery using microfluidic platforms.
Advanced Drug Delivery Reviews, 128, 3-28 (2018)
Recent advances of controlled drug delivery usingmicrofluidic platforms.
Advanced Drug Delivery Reviews, 128, 3-28 (2018)
Microfluidic-assisted fabrication of carriers for controlled drug delivery.
Lab on a chip, 17, 1856-1883 (2017)
Advanced drug delivery reviews, 128, 3-28 (2017-09-19)
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired
Lab on a chip, 17(11), 1856-1883 (2017-05-10)
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service