MTOX1030
Kidney PTEC Control Cell (SA7K Clone)
Synonym(s):
RPTEC SA7K control cell line
Sign Into View Organizational & Contract Pricing
All Photos(10)
About This Item
Recommended Products
biological source
human female renal (proximal convoluted tubule epithelial cells)
description
1 vial
form
liquid
storage temp.
−196°C
General description
Sigma modified human primary renal proximal tubule epithelial cells (RPTEC) with ZFNs to effectively create novel human RPTEC cell lines that can be utilized for investigating kidney toxicology (nephrotoxicity), transporters and various other renal studies. Sigma′s RPTEC′s exhibit normal epithelial morphology and expression of Renal Proximal Tubule (PT) specific markers such as, CD13 and α-GST. Sigma′s RPTEC′s maintain typical PT functions including albumin reabsorption, γ-glutamyl transpeptidase (GGT) activity, and respond to parathyroid hormone. The cells respond to several known human nephrotoxicants similar to human primary cells and demonstrate robust expression and activity of key kidney uptake and efflux transporters incuding OCT2, OATP4C1, OAT1, OCTN1, MRP2, MRP4, P-gp, MATE1, MATE2-K, PEPT1, and PEPT2.
Application
Human RPTEC SA7K control cell line and transporter KO models have been validated in several standard and 3D assays for measuring nephrotoxicity and transporter assays. RPTEC SA7K control cells can be used to measure toxicity of compounds using dose-response curves and viability such as MTT based in vitro Toxicology in both 2D and 3D culture.
RPTEC SA7K control cells can also be used to measure compound uptake/efflux by transporters using inhibitors. Precision editing in RPTEC SA7K transporter KO cells provides a more predictive platform for compound uptake/efflux by transporters without the need for non-specific inhibitors.
RPTEC SA7K cells have been validated for use on the Mimetas 3-lane OrganoPlate® in both toxicity and barrier integrity assays ( Z742750).
RPTEC SA7K cells can also be used on the AIM Biotech 3D cell culture chip in toxicity and permeability assays ( DAX01).
RPTEC SA7K control cells can also be used to measure compound uptake/efflux by transporters using inhibitors. Precision editing in RPTEC SA7K transporter KO cells provides a more predictive platform for compound uptake/efflux by transporters without the need for non-specific inhibitors.
RPTEC SA7K cells have been validated for use on the Mimetas 3-lane OrganoPlate® in both toxicity and barrier integrity assays ( Z742750).
RPTEC SA7K cells can also be used on the AIM Biotech 3D cell culture chip in toxicity and permeability assays ( DAX01).
Features and Benefits
Sigma′s human RPTEC control SA7K clone cells exhibit normal renal proximal tubule characteristics, functional renal uptake and efflux transporters and are sensitive to human nephrotoxicants making the SA7K clone ideal for studying drug-transporter interactions and early detection of renal toxicants. The SA7K clone should be used as a control for Sigma′s human RPTEC knockout (KO) cells.
Quality
Tested for Mycoplasma, sterility, post-freeze viability, short terminal repeat (STR) analysis for cell line identification, cytochrome oxidase I (COI) analysis for cell line species confirmation
Legal Information
These products are covered by the ADME/Tox Cell Lines License as described in Exhibit 1, in the technical bulletin.
OrganoPlate is a registered trademark of MIMETAS B.V.
Disclaimer
RESEARCH USE ONLY. This product is regulated in France when intended to be used for scientific purposes, including for import and export activities (Article L 1211-1 paragraph 2 of the Public Health Code). The purchaser (i.e. enduser) is required to obtain an import authorization from the France Ministry of Research referred in the Article L1245-5-1 II. of Public Health Code. By ordering this product, you are confirming that you have obtained the proper import authorization.
Storage Class Code
10 - Combustible liquids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Bioengineering (Basel, Switzerland), 9(10) (2022-10-28)
There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on
Lab on a chip, 21(9), 1676-1685 (2021-04-17)
Assessment of epithelial barrier function is critically important for studying healthy and diseased biological models. Here we introduce an instrument that measures transepithelial electrical resistance (TEER) of perfused epithelial tubes in the microfluidic OrganoPlate platform. The tubules are grown in
Kidney360, 3(2), 217-231 (2022-04-05)
Renal ischemia/reperfusion injury (rIRI) is one of the major causes of AKI. Although animal models are suitable for investigating systemic symptoms of AKI, they are limited in translatability. Human in vitro models are crucial in giving mechanistic insights into rIRI;
The AAPS journal, 20(5), 90-90 (2018-08-16)
Proximal tubules in the kidney play a crucial role in reabsorbing and eliminating substrates from the body into the urine, leading to high local concentrations of xenobiotics. This makes the proximal tubule a major target for drug toxicity that needs
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service