Skip to Content
Merck
All Photos(5)

Documents

L4000

Sigma-Aldrich

Lanthanum(III) oxide

≥99.9%

Synonym(s):

Lanthana, Lanthanum sesquioxide, Lanthanum trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
La2O3
CAS Number:
Molecular Weight:
325.81
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99.9%

form

powder

reaction suitability

reagent type: catalyst
core: lanthanum

density

6.51 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[La]O[La]=O

InChI

1S/2La.3O

InChI key

KTUFCUMIWABKDW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

La2O3 is a wide band gap p-type semiconductor also called lanthanum sesquioxide. It is the only lanthanide oxide with an empty Ln-4f shell and is widely used to prepare optical materials, dielectrics, and conductive ceramics. La2O3 can also be used as a catalyst in many organic transformations.

Application

Lanthanum(III) oxide improves the alkali resistance of the glass and because of its high refractive index and low dispersion, it is widely used in the preparation of camera and telescope lenses, infrared-absorbing glasses, and other special optical fibers. For example, it can be used as a starting material to prepare La2O3-CaO-B2O3-SiO2 glass for diagnosis X-ray shielding.

It can be used to prepare thermal-barrier coatings with a high thermal expansion coefficient and low thermal conductivity.

It can also be used as a recyclable catalytic system for the synthesis of diphenyl sulfides and selenides.
Precursor to LAMOX fast ion conductors and superconductors.

Features and Benefits

  • High refractive index
  • Thermal stability
  • Hardness
  • High dielectric constant

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lixia Wang et al.
Journal of hazardous materials, 196, 342-349 (2011-09-29)
This investigation was to increase the adsorption capacity of magnetite for Congo red (CR) by adulterating a small quantity of La(3+) ions into it. The adsorption capability of nanocrystalline Fe(3-x)La(x)O(4) (x=0, 0.01, 0.05, 0.10) ferrite to remove CR from aqueous
Lili Liu et al.
Journal of nanoscience and nanotechnology, 11(3), 2155-2162 (2011-04-01)
La2O3-CeO2 nanopowders with different La2O3 (0-20 mol%) were prepared by the sol-gel method. The modification of the cubic structure of ceria by substituting La3+ for Ce4+ into the lattice of CeO2 has been investigated. The crystal structure of La2O3-CeO2 nanomaterials
A J Barón-González et al.
Journal of physics. Condensed matter : an Institute of Physics journal, 23(49), 496003-496003 (2011-11-24)
The origin of dielectric anomalies and magnetodielectric response of La(2)MnCoO(6) has been investigated by means of ultra-high resolution synchrotron x-ray powder diffraction, neutron powder diffraction, resistivity, magnetization and dielectric measurements. The study has been performed on two different bulk samples
Lukas C Gerber et al.
Chemical communications (Cambridge, England), 48(32), 3869-3871 (2012-03-14)
Lanthanum oxide nanoparticles were utilized to scavenge phosphate from microbial growth media for the use of targeted nutrient starvation as an antimicrobial strategy. Only in phosphate poor environments a toxic effect was observed. The effect was shown on Escherichia coli
Yuhui Ma et al.
Nanotoxicology, 5(4), 743-753 (2011-01-26)
With the increasing applications of metal-based nanoparticles in various commercial products, it is necessary to address their environmental fate and potential toxicity. In this work, we assessed the phytotoxicity of lanthanum oxide (La₂O₃) NPs to cucumber plants and determined its

Articles

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service