Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

921696

Sigma-Aldrich

Droplet generator chip - One channel design

Fluidic 163, PC

Synonym(s):

Microfluidics chip

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
42142600
NACRES:
NA.23

description

Microfludic chip ×1

Looking for similar products? Visit Product Comparison Guide

Application

Microfluidic generation of droplets can produce highly monodispersed droplets with high frequency (up to hundreds of kHz). Interest in droplet-based microfluidic systems has grown substantially, because microfluidics offers the ability to handle very small volumes (μl to fl) of fluids, provides better mixing, encapsulation, sorting, and sensing. Microfluidics can be used for high throughput experimentation. Microfluidic-based droplets have many diverse and varied applications such as particle synthesis and chemical analysis. Highly controlled droplet production also makes single cell analysis, or drug testing possible.

Droplet generator chip - One channel design, Fluidic 163, PC is made of PC (polycarbonate), it is the larger sibling of Fluidic 162 and features a similar design with larger channel dimensions. With a nozzle size of 140 um droplet sizes between 190 um (∼3.25 nl) and 420 um diameter can be realized. Fluidic 163 gives the possibility to be utilized from two sides, as it features droplet generation crossings at either side of the collection channel. Both sides are similar in channel design with a slight difference in distance of the double cross intersections.

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Recent advances of controlled drug delivery using microfluidic platforms.
Li X, et al.
Drug delivery, 128, 3-28 (2018)
Microfluidic-assisted fabrication of carriers for controlled drug delivery.
Santos H A, et al.
Lab on a chip, 17, 1856-1883 (2017)
Dongfei Liu et al.
Lab on a chip, 17(11), 1856-1883 (2017-05-10)
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range
Sharma T Sanjay et al.
Advanced drug delivery reviews, 128, 3-28 (2017-09-19)
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service