Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

523968

Sigma-Aldrich

3-Hydroxyphenylboronic acid

≥95.0%

Synonym(s):

3-Hydroxybenzeneboronic acid, m-Hydroxybenzeneboronic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
HOC6H4B(OH)2
CAS Number:
Molecular Weight:
137.93
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.22

Assay

≥95.0%

mp

210-213 °C (dec.) (lit.)

SMILES string

OB(O)c1cccc(O)c1

InChI

1S/C6H7BO3/c8-6-3-1-2-5(4-6)7(9)10/h1-4,8-10H

InChI key

WFWQWTPAPNEOFE-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

3-Hydroxyphenylboronic acid (3-HPBA) can be used as a reagent:
  • In Suzuki-Miyaura coupling reactions with aryl halides for the formation of C-C bond in the presence of Pd catalyst.
  •  To synthesize boron/nitrogen-doped polymer nano/microspheres by hydrothermal polymerization with formaldehyde and ammonia.      
  • To prepare carbon quantum dots based on 3-HPBA as selective fructose sensor.     
  • In the development of modified electrodes for electrochemical biosensors.

Footnote

Contains varying amounts of anhydride

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Synthesis of hyperbranched polythiophene with a controlled degree of branching via catalyst-transfer Suzuki-Miyaura coupling reaction
Segawa Y, et al.
Polym. Chem., 4(4), 1208-1215 (2013)
Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives
Anzai J-i
Materials Science and Engineering, C, 67, 737-746 (2016)
Mingyan Zhu et al.
ACS combinatorial science, 14(2), 124-134 (2011-12-21)
As a continuation of our previous report (J. Comb. Chem.2010, 12, 548-558), we accomplished the diversity-oriented synthesis of polyheterocyclic small-molecule library with privileged benzopyran substructure. To ensure the synthetic efficiency, we utilized the solid-phase parallel platform and the fluorous-tag-based solution-phase
Facile synthesis of monodisperse bulk boron-and nitrogen-doped carbon nano/microspheres
Zhao J, et al.
Journal of Material Chemistry A, 6(46), 23780-23786 (2018)
Diana M A Crista et al.
Journal of fluorescence, 29(1), 265-270 (2019-01-07)
The selective fluorescence sensing of fructose was achieved by fluorescence quenching of the emission of hydrothermal-synthesized carbon quantum dots prepared by 3-hydroxyphenylboronic acid. Quantification of fructose was possible in aqueous solutions with pH of 9 (Limit of Detection LOD and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service