跳转至内容
Merck
所有图片(3)

主要文件

SCC049

Sigma-Aldrich

O9-1 Mouse Cranial Neural Crest Cell Line

Mouse

别名:

Multipotent mesenchymal cells

登录查看公司和协议定价


About This Item

分類程式碼代碼:
41106514
eCl@ss:
32011203
NACRES:
NA.81

产品名称

O9-1 Mouse Cranial Neural Crest Cell Line, stably expresses stem cell markers and neural crest markers

生物源

mouse

品質等級

技術

cell culture | stem cell: suitable

運輸包裝

liquid nitrogen

一般說明

Cranial neural crest cells give rise to ectomesenchymal derivatives such as cranial bones, cartilage, smooth muscle, dentin, as well as melanocytes, corneal endothelial cells, and neurons and glial cells of the peripheral nervous system. Previous studies have suggested that although multipotent stem-like cells may exist during the course of cranial neural crest development, they are transient, undergoing lineage restriction early in embryonic development.

Whole-genome expression profiling of O9-1 cells revealed that this line stably expresses stem cell markers (CD44, Sca-1, and Bmi1) and neural crest markers (AP-2a, Twist1, Sox9, Myc, Ets1, Dlx1, Dlx2, Crabp1, Epha2, and Itgb1). O9-1 cells are capable of contributing to cranial mesenchymal (osteoblast and smooth muscle) neural crest fates when injected into E13.5 mouse cranial tissue explants and chicken embryos. These results suggest that O9-1 cells represent multipotent mesenchymal cranial neural crest cells. The O9-1 cell line should serve as a useful tool for investigating the molecular properties of differentiating cranial neural crest cells. The O9-1 cell line can be propagated and passaged for at least 10 passages, and can differentiate into osteoblasts, chondrocytes, smooth muscle cells, and glial cells (Ishii, 2012).

Ishii, M., et al. (2012) A stable cranial neural crest cell line from mouse. Stem Cells Dev. 21(17): 3069-3080.

細胞系描述

Neural Lineage Cells

應用

Research Category
Neuroscience

Stem Cell Research
This product is intended for sale and sold solely to academic institutions for internal academic research use per the terms of the “Academic Use Agreement” as detailed in the product documentation. For information regarding any other use, please contact licensing@emdmillipore.com.

成分

1) ≥1X106 viable O9-1 Mouse Cranial Neural Crest Cell Line: (Catalog No. SCC049). Derived from mass cultures of Wnt1-Cre; R26R-GFP reporter-expressing cranial neuronal crest cells from E8.5 mouse embryos.

品質

• Each vial contains ≥ 1X106 viable cells at passage 20 -22
• Cells tested negative for infectious disease by a murine PCR panel (Mouse Essential CLEAR Panel by Charles River Animal Diagnostic Services)
• Cells tested negative for mycoplasma contamination

外觀

Product is supplied frozen in 10% DMSO and 90% expansion medium.

儲存和穩定性

O9-1 cells should be stored in liquid nitrogen. The cells can be passage for at least 10 passages without significantly affecting the cell marker expression and functionality.

儲存類別代碼

10 - Combustible liquids

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice.
Yoshioka, et al.
Development, 149 (2023)
Shun Yan et al.
Proceedings of the National Academy of Sciences of the United States of America, 117(46), 28847-28858 (2020-11-01)
CHD7 encodes an ATP-dependent chromatin remodeling factor. Mutation of this gene causes multiple developmental disorders, including CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth/development, Genital abnormalities, and Ear anomalies) syndrome, in which conotruncal anomalies
Fernanda Bajanca et al.
Nature communications, 10(1), 1518-1518 (2019-04-05)
When migrating in vivo, cells are exposed to numerous conflicting signals: chemokines, repellents, extracellular matrix, growth factors. The roles of several of these molecules have been studied individually in vitro or in vivo, but we have yet to understand how
Archana Kamalakar et al.
Cellular signalling, 54, 130-138 (2018-12-12)
During craniofacial development, cranial neural crest (CNC) cells migrate into the developing face and form bone through intramembranous ossification. Loss of JAGGED1 (JAG1) signaling in the CNC cells is associated with maxillary hypoplasia or maxillary bone deficiency (MBD) in mice
Angelica Mastandrea Amanso et al.
Journal of cellular biochemistry, 122(5), 538-548 (2021-01-23)
The development of bone requires carefully choregraphed signaling to bone progenitors to form bone. Our group recently described the requirement of transforming growth factor beta receptor 3 (TGFβR3), a receptor involved in TGFβ pathway signaling, during osteoblast lineage commitment in

实验方案

Step-by-step culture protocols for neural stem cell culture including NSC isolation, expansion, differentiation and characterization.

Step-by-step culture protocols for neural stem cell culture including NSC isolation, expansion, differentiation and characterization.

Step-by-step culture protocols for neural stem cell culture including NSC isolation, expansion, differentiation and characterization.

Step-by-step culture protocols for neural stem cell culture including NSC isolation, expansion, differentiation and characterization.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门