跳转至内容
Merck

741965

Sigma-Aldrich

金纳米颗粒

20 nm diameter, OD 1, stabilized suspension in citrate buffer

别名:

Au NP, Gold Colloid

登录查看公司和协议定价


About This Item

MDL號碼:
分類程式碼代碼:
12352302
PubChem物質ID:
NACRES:
NA.23

形狀

nanoparticles
suspension

包含

Proprietary Surfactant as stabilizer

濃度

~6.54E+11 particles/mL

外徑

1

直徑

20 nm

λmax

518-522 nm

蛋白質二硫鍵異構酶

<0.2

儲存溫度

2-8°C

SMILES 字串

[Au]

InChI

1S/Au

InChI 密鑰

PCHJSUWPFVWCPO-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

相关类别

一般說明

Gold nanoparticles (AuNPs) are versatile materials widely used in biomedical sciences and electrochemical sensor based applications. AuNPs are tunable nano-materials with excellent thermo-mechanical properties, high surface area, and low toxicity.

應用

Citrate stabilized AuNPs can be used for a variety of applications such as:
  • neutrophil labeling for monitoring the effect of different drugs
  • immobilization of proteins for biosensor applications
  • nano-carrier for drug delivery system for the release of hydrophobic drugs.

Ideal for adsorption of thiolated ligands such as oligonucleotides and polyethylene glycols. Also, due to the increased stability, these gold nanoparticles are ideal for use in physical and optical applications. Note: This product is not ideal for protein adsorption. For gold nanoparticles suitable for adsorption of proteins and other ligands for conjugate development, please see our gold nanoparticles stabilized in PBS.

This material is highly monodisperse (<12% variability in size and shape), and provides significantly improved surface reactivity. Applications include Surface Enhanced Raman Lables, Sensing/Detection, Biological Targeting, Plasmonics and Electronics.

法律資訊

Product of CytoDiagnostics, Inc.

儲存類別代碼

12 - Non Combustible Liquids

水污染物質分類(WGK)

nwg

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Gold-Organic-Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts
Budroni G and Corma A
Angewandte Chemie (International ed. in English), 45(20), 3328-3331 (2006)
Biomedical applications of gold nanoparticles
Cabuzu D, et al.
Current Topics in Medicinal Chemistry, 15(16), 1605-1613 (2015)
Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?
Alkilany AM and Murphy CJ
Journal of Nanoparticle Research, 12(7), 2313-2333 (2010)
Evaluation of novel Fmoc-tripeptide based hydrogels as immobilization supports for electrochemical biosensors
Fusco G, et al.
Microchemical Journal, Devoted to the Application of Microtechniques in All Branches of Science, 137(24), 105-110 (2018)
Nanomaterials based electrochemical sensors for biomedical applications
Chen A and Chatterjee S
Chemical Society Reviews, 42(12), 5425-5438 (2013)

商品

Steven J. Oldenburg, Ph.D. provides an overview of lateral flow diagnostic assays and discusses the use of ultra-bright reporter particles based on the unique optical properties of gold nanoshells that significantly increase the sensitivity of lateral flow immunoassays.

Steven J. Oldenburg, Ph.D. provides an overview of lateral flow diagnostic assays and discusses the use of ultra-bright reporter particles based on the unique optical properties of gold nanoshells that significantly increase the sensitivity of lateral flow immunoassays.

Sustainable energy sources with high production efficiency are crucial for meeting increasing energy demand.

Steven J. Oldenburg, Ph.D. provides an overview of lateral flow diagnostic assays and discusses the use of ultra-bright reporter particles based on the unique optical properties of gold nanoshells that significantly increase the sensitivity of lateral flow immunoassays.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门