跳转至内容
Merck

C–H 官能团化

C-H官能团化被称为合成有机化学的最高目标。1 在有机化学、有机金属和催化领域的近期努力在了解C-H键的反应性和利用该洞见形成稳健反应方面取得了重大收获。这表明,是时候广泛地将这些策略引入逆合成字典中。2-11 以选择的、可控的方式将C–H可靠、可预测地转换为C–C、 C–N、 C–O 或 C–X 键有利于步骤经济和减少浪费。

用于C–H活化的新方法扩展了给定分子中可靶向的位点数量,从而增加了将其精细化为更复杂产品的机会。此外,它还可实现在有机合成中靶向完全不同类型的化学键,尤其是具有高化学选择性的化学键。通过结合传统的官能团化学,C-H官能团化极大简化了用于构建复杂天然产物和药物化合物的化学合成过程。尽管C-H官能团化具有明显的优势,12但许多有机化学课程尚未将这种方法更新进去,更多进一步的信息可在C-H官能团化手册中找到。


相关技术文章

  • Professor Karl Anker Jørgensen and his group have developed ethers which serve as excellent chiral organocatalysts in the direct asymmetric α-functionalization of aldehydes.
  • The synthesis of heteroaromatic and aromatic compounds is at the heart of the chemical industry. The ever-growing demand for new chemical entities, coupled with dwindling resources and time constraints allotted to any given research project, a rapid way to diversify (hetero)aromatic scaffolds is needed.
  • The Du Bois group at Stanford University has made substantial progress within the field of Rh-catalyzed C–H amination via oxidative cyclization of carbamate, sulfamate, sulfamide, urea, and guanidine substrates to give 1,2- and 1,3-heteroatom motifs masked in the form of 5- and 6-membered ring heterocycles.
  • Aryl chlorides are commonly used in cross-coupling reactions and can serve as key intermediates towards the synthesis of pharmaceutical drug candidates and natural products.
  • A recyclable, ligand-free ruthenium catalyst for C–H activation reactions and concomitant C–C bond formation in the presence of water.
  • 查看完整内容 (12)

查找更多文章







参考文献

1.
Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. 1995. Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Acc. Chem. Res.. 28(3):154-162. https://doi.org/10.1021/ar00051a009
2.
He J, Wasa M, Chan KSL, Shao Q, Yu J. 2017. Palladium-Catalyzed Transformations of Alkyl C?H Bonds. Chem. Rev.. 117(13):8754-8786. https://doi.org/10.1021/acs.chemrev.6b00622
3.
Wang D, Weinstein AB, White PB, Stahl SS. 2018. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev.. 118(5):2636-2679. https://doi.org/10.1021/acs.chemrev.7b00334
4.
Davies HML, Morton D. 2016. Recent Advances in C?H Functionalization. J. Org. Chem.. 81(2):343-350. https://doi.org/10.1021/acs.joc.5b02818
5.
Upp DM, Lewis JC. 2017. Selective C?H bond functionalization using repurposed or artificial metalloenzymes. Current Opinion in Chemical Biology. 3748-55. https://doi.org/10.1016/j.cbpa.2016.12.027
6.
Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.. 45(3):546-576. https://doi.org/10.1039/c5cs00628g
7.
Yamaguchi J, Yamaguchi AD, Itami K. 2012. C?H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed.. 51(36):8960-9009. https://doi.org/10.1002/anie.201201666
8.
Lyons TW, Sanford MS. 2010. Palladium-Catalyzed Ligand-Directed C?H Functionalization Reactions. Chem. Rev.. 110(2):1147-1169. https://doi.org/10.1021/cr900184e
9.
Wencel-Delord J, Dröge T, Liu F, Glorius F. 2011. Towards mild metal-catalyzed C?H bond activation. Chem. Soc. Rev.. 40(9):4740. https://doi.org/10.1039/c1cs15083a
10.
Arockiam PB, Bruneau C, Dixneuf PH. 2012. Ruthenium(II)-Catalyzed C?H Bond Activation and Functionalization. Chem. Rev.. 112(11):5879-5918. https://doi.org/10.1021/cr300153j
11.
Engle KM, Mei T, Wasa M, Yu J. 2012. Weak Coordination as a Powerful Means for Developing Broadly Useful C?H Functionalization Reactions. Acc. Chem. Res.. 45(6):788-802. https://doi.org/10.1021/ar200185g
12.
Gutekunst WR, Baran PS. 2011. C?H functionalization logic in total synthesis. Chem. Soc. Rev.. 40(4):1976. https://doi.org/10.1039/c0cs00182a
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?