Skip to Content
Merck
All Photos(1)

Documents

440175

Sigma-Aldrich

Trimethoxymethylsilane

95%

Synonym(s):

MTMS, Methyltrimethoxysilane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3Si(OCH3)3
CAS Number:
Molecular Weight:
136.22
Beilstein:
1736151
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.22

Assay

95%

form

liquid

impurities

3% methyl alcohol

refractive index

n20/D 1.371 (lit.)

bp

102-104 °C (lit.)

density

0.955 g/mL at 25 °C (lit.)

SMILES string

CO[Si](C)(OC)OC

InChI

1S/C4H12O3Si/c1-5-8(4,6-2)7-3/h1-4H3

InChI key

BFXIKLCIZHOAAZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Trimethoxymethylsilane (MTMS) is one of the key precursor for the synthesis of:
  • Monolithic silica columns with various skeleton sizes for capillary liquid chromatography.
  • Ionogels, where an ionic liquid is confined within silica-derived networks.
  • Monolithic silica aerogels via acid-base sol-gel polymerization.
  • Hydrophobic, flexible, and ultralightweight silylated nanocellulose sponges for the selective removal of oil from water.

Pictograms

Flame

Signal Word

Danger

Hazard Statements

Hazard Classifications

Flam. Liq. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

48.2 °F

Flash Point(C)

9 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water.
Zhang Z, et al.
Chemistry of Materials, 26(8), 2659-2668 (2014)
Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography.
Motokawa M, et al.
Journal of Chromatography A, 961(1), 53-63 (2002)
Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks.
Neouze M A, et al.
Chemistry of Materials, 18(17), 3931-3936 (2006)
Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying.
Bhagat S D, et al.
Microporous and Mesoporous Materials : The Official Journal of the International Zeolite Association, 100(1-3), 350-355 (2007)
M Morpurgo et al.
Farmaco (Societa chimica italiana : 1989), 60(8), 675-683 (2005-06-28)
The influence of processing parameters and synthetic strategies in the properties of sol-gel derived silica matrices intended for the release of bioactive compounds was investigated. The time-evolution of the matrix properties during its aging at room temperature in the dry

Articles

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service