Skip to Content
Merck
All Photos(4)

Key Documents

F7131

Sigma-Aldrich

N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly

chromogenic, ≥99% (HPLC)

Synonym(s):

FAPGG, N-[3-(2-Furyl)acryloyl]-L-phenylalanyl-glycyl-glycine

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C20H21N3O6
CAS Number:
Molecular Weight:
399.40
MDL number:
UNSPSC Code:
12352202
PubChem Substance ID:
NACRES:
NA.32

Product Name

N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly,

Quality Level

storage temp.

−20°C

SMILES string

OC(=O)CNC(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)\C=C\c2ccco2

InChI

1S/C20H21N3O6/c24-17(9-8-15-7-4-10-29-15)23-16(11-14-5-2-1-3-6-14)20(28)22-12-18(25)21-13-19(26)27/h1-10,16H,11-13H2,(H,21,25)(H,22,28)(H,23,24)(H,26,27)/b9-8+/t16-/m0/s1

InChI key

ZDLZKMDMBBMJLI-FDMDGMSGSA-N

Gene Information

Looking for similar products? Visit Product Comparison Guide

Amino Acid Sequence

FA-Phe-Gly-Gly

General description

N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly acts as a substrate for angiotensin converting enzyme (ACE), and is used in inhibitory assays of ACE.

Application

N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly has been used for kinetic spectrophotometric assay of ACE (angiotensin converting enzyme) inhibitory activity.

Substrates

A substrate for continuous spectrophotometric assay of angiotensin converting enzyme (ACE).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

E Anzenbacherová et al.
Journal of pharmaceutical and biomedical analysis, 24(5-6), 1151-1156 (2001-03-15)
For determination of levels of plasmatic inhibitor of ACE (angiotensin convertase) a simple method was used based on a combination of enzymatic reaction followed by an HPLC determination of its product. The inhibitor (e.g. enalaprilat) was at first separated from
J E Buttery et al.
Clinical chemistry, 39(2), 312-316 (1993-02-01)
In the kinetic angiotensin-converting enzyme (ACE) method, a practical and optimal buffer is 80 mmol/L borate buffer at pH 8.2 (37 degrees C). A lag phase is detected in the reaction, and a 5-min incubation of substrate and plasma is
A Harjanne
Clinical chemistry, 30(6), 901-902 (1984-06-01)
In this automated kinetic modification of a previous method (Anal Biochem 95: 540-548, 1979) for determining angiotensin-converting enzyme (EC 3.4.15.1), 3-(2- furylacryloyl )-L- phenylalanylglycylglycine is used as the substrate. The change in absorbance at 340 nm is used to monitor
Siqi Sun et al.
Marine drugs, 17(3) (2019-03-22)
Angiotensin I-converting enzyme (ACE) inhibitory peptides derived from seaweed represent a potential source of new antihypertensive. The aim of this study was to isolate and purify ACE inhibitory peptides (ACEIPs) from the protein hydrolysate of the marine macroalga Ulva intestinalis.
Wen-Chi Hou et al.
Journal of agricultural and food chemistry, 51(6), 1706-1709 (2003-03-06)
Five commercial peptides, namely, reduced glutathione (GSH), oxidized glutathione (GSSG), carnosine, homocarnosine, and anserine, were used to test angiotensin converting enzyme inhibitory (ACEI) activities using N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly (FAPGG) as a substrate. All of these peptides showed dose-dependent ACEI activities. Using 50%

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service