Skip to Content
Merck
All Photos(1)

Key Documents

926027

Sigma-Aldrich

NanoFabTX-DOTAP Lipid Mix

for synthesis of cationic (DOTAP) liposomes

Synonym(s):

Drug delivery, LNP, Microfluidics, NanoFab reagent kit, Nanoformulation, Nanoparticle

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12162002
NACRES:
NA.23

Quality Level

storage temp.

−20°C

General description

NanoFabTx-DOTAP Lipid Mix includes reagents and optimized protocols with step-by-step instructions for synthesizing cationic liposomes for drug delivery research applications. The modification of liposomes with the cationic lipid, DOTAP, have numerous advantages such as their large-DNA incorporation, high transfection efficiency, and low toxicity. Liposome-based formulations are widely used for drug delivery applications and enable improved therapeutic efficacy of a range of drug types including small molecules, nucleic acids, proteins, and peptides.

Comprehensive protocols for liposome synthesis are included:

  • A lipid film hydration and extrusion protocol.
  • A microfluidics protocol using commercial platforms or syringe pumps.

The microfluidics protocol included with this product uses NanoFabTx device kits (911593). These kits come with the microfluidics chips, fittings, and tubing required to get started with microfluidics-based synthesis (compatible microfluidics system or syringe pump required).

Application

NanoFabTx-DOTAP Lipid Mix is a ready-to-use nanoformulation blend for the synthesis of cationic DOTAP-functionalized liposomes. This kit enables users to encapsulate a wide variety of therapeutic drug molecules for targeted or extended drug delivery without the need for lengthy trial-and-error optimization. NanoFabTx kits provide an easy-to-use toolkit for encapsulating a variety of therapeutics in nanoparticles, microparticles, or liposomes. Drug encapsulated particles synthesized with the NanoFabTx kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery, and vaccine delivery.

Features and Benefits

  • A ready-to-use nanoformulation blend for the synthesis of cationic liposomes
  • Step-by-step protocols (extrusion or microfluidic) developed and tested by our formulation scientists
  • Flexible synthesis tools to create uniform and reproducible liposomes
  • Optimized to make liposomes around 100 nm with low polydispersity
  • DOTAP surface-functionalized allows for targeting ligand conjugation to enable targeted drug delivery

Legal Information

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids

WGK

WGK 3


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Which polymers can make nanoparticulate drug carriers long-circulating?
Torchilin VP, et al.
Advanced Drug Delivery Reviews, 16, 141-155 (1995)
Which polymers can make nanoparticulate drug carriers long-circulating?
Torchilin V P, et al.
Advanced Drug Delivery Reviews, 16, 141-155 (1995)
Yunes Panahi et al.
Artificial cells, nanomedicine, and biotechnology, 45(4), 788-799 (2017-03-11)
Liposome is a new nanostructure for the encapsulation and delivery of bioactive agents. There are a lot of bioactive materials that could be incorporated into liposomes including cosmetics, food ingredients, and pharmaceuticals. Liposomes possess particular properties such as biocompatibility, biodegradability;
T D Madden et al.
Chemistry and physics of lipids, 53(1), 37-46 (1990-03-01)
We have shown previously that transmembrane proton gradients can be used to efficiently accumulate biogenic amines [M.B. Bally et al. (1988) Chem. Phys. Lipids 47, 97-107] and doxorubicin [L.D. Mayer, M.B. Bally and P.R. Cullis (1986) Biochim. Biophys. Acta 857
D Papahadjopoulos et al.
Proceedings of the National Academy of Sciences of the United States of America, 88(24), 11460-11464 (1991-12-15)
The results obtained in this study establish that liposome formulations incorporating a synthetic polyethylene glycol-derivatized phospholipid have a pronounced effect on liposome tissue distribution and can produce a large increase in the pharmacological efficacy of encapsulated antitumor drugs. This effect

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service