Skip to Content
Merck
All Photos(2)

Documents

157635

Sigma-Aldrich

7,7,8,8-Tetracyanoquinodimethane

98%

Synonym(s):

(2,5-Cyclohexadiene-1,4-diylidene)-dimalononitrile, TCNQ

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C12H4N4
CAS Number:
Molecular Weight:
204.19
Beilstein:
1427366
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

98%

form

solid

mp

287-289 °C (dec.) (lit.)

Orbital energy

LUMO 4.6 eV 

semiconductor properties

N-type (mobility=10−5 cm2/V·s)

SMILES string

N#C\C(C#N)=C1/C=C\C(C=C1)=C(/C#N)C#N

InChI

1S/C12H4N4/c13-5-11(6-14)9-1-2-10(4-3-9)12(7-15)8-16/h1-4H

InChI key

PCCVSPMFGIFTHU-UHFFFAOYSA-N

Gene Information

Looking for similar products? Visit Product Comparison Guide

General description

7,7,8,8-Tetracyanoquinodimethane (TNCQ) is a strong electron acceptor as it has four cyano groups and π-conjugation bonds that form charge transferring chains and ion radical salts which are mainly used as p-dopants for the fabrication of a variety of semiconductor applications.

Application

Electron-acceptor molecule used to form charge-transfer superconductors.
Tetrathiotetracene (TTT) and TNCQ can be thermally co-deposited to form n-type thin films with a power factor of 0.33 μWm-1K-2 and an electrical conductivity of 57 Sm-1 to fabricate thin film organic thermoelectric generators. It can be used to functionalize chemical vapor deposited (CVD) graphene and form a p-doped nanocomposite that finds potential application as a conductive anode for organic solar cells (OSCs). Electrochemical sensors can be developed by using TNCQ and graphene oxide to form a glassy electrode for the detection of reduced glutathione (GSH).

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Electrochemical and X-ray diffraction study of the redox cycling of nanocrystals of 7, 7, 8, 8-tetracyanoquinodimethane. Observation of a solid-solid phase transformation controlled by nucleation and growth.
Bond, A. M., Fletcher, S., Marken, F., Shaw, S. J., & Symons, P. G.
J. Chem. Soc., Faraday, 92(20), 3925-3933 (1996)
The crystal and molecular structure of 7, 7, 8, 8-tetracyanoquinodimethane
Long, R. E., Sparks, R. A., & Trueblood, K. N.
Acta Crystallographica, 18(5), 932-939 (1965)
Williams, J.M. et al.
Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory (1992)
Yuuta Yano et al.
Nature, 571(7765), 387-392 (2019-06-28)
The properties of graphene nanoribbons (GNRs)1-5-such as conductivity or semiconductivity, charge mobility and on/off ratio-depend greatly on their width, length and edge structure. Existing bottom-up methods used to synthesize GNRs cannot achieve control over all three of these parameters simultaneously
Growth and characterization of 7, 7, 8, 8-tetracyano-quinodimethane crystals on chemical vapor deposition graphene.
Black A, et al.
Journal of Crystal Growth, 453(2), 1-6 (2016)

Articles

Fabrication procedure of organic field effect transistor device using a soluble pentacene precursor.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service