343161
Iron(II) sulfide
−100 mesh, 99.9% trace metals basis
Synonym(s):
Ferrous sulfide
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
Quality Level
Assay
99.9% trace metals basis
form
powder
reaction suitability
reagent type: catalyst
core: iron
particle size
−100 mesh
density
4.84 g/mL at 25 °C (lit.)
SMILES string
S=[Fe]
InChI
1S/Fe.S
InChI key
MBMLMWLHJBBADN-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Application
- Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A: This study delves into the microbial oxidation of metal sulfides like Iron(II) sulfide, shedding light on bioleaching processes crucial for the extraction of valuable metals from ores, which is highly relevant for environmental and materials science applications (Vera et al., 2022).
- Novel QTL Associated with Aerenchyma-Mediated Radial Oxygen Loss (ROL) in Rice: Explores genetic traits influenced by conditions such as the presence of Iron(II) sulfide in paddy fields, providing insights into how rice adapts to iron-rich anaerobic soils, which is vital for agricultural biotechnology and crop science (Duyen et al., 2022).
- Fe(ii) and Fe(iii) dithiocarbamate complexes as single source precursors: Investigates the synthesis of nanoscale iron sulfides from these precursors, using in situ X-ray absorption spectroscopy, which is essential for developing advanced materials with specific magnetic and electronic properties (Roffey et al., 2019).
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Science (New York, N.Y.), 332(6037), 1548-1551 (2011-06-28)
The iron isotope composition of sedimentary pyrite has been proposed as a potential proxy to trace microbial metabolism and the redox evolution of the oceans. We demonstrate that Fe isotope fractionation accompanies abiotic pyrite formation in the absence of Fe(II)
Proceedings of the National Academy of Sciences of the United States of America, 109(39), 15734-15739 (2012-09-29)
Fumarate and nitrate reduction (FNR) regulatory proteins are O(2)-sensing bacterial transcription factors that control the switch between aerobic and anaerobic metabolism. Under anaerobic conditions [4Fe-4S](2+)-FNR exists as a DNA-binding homodimer. In response to elevated oxygen levels, the [4Fe-4S](2+) cluster undergoes
ACS nano, 6(6), 4713-4721 (2012-05-10)
We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate
Environmental science & technology, 47(2), 741-749 (2012-12-18)
Recent publications have shown that the anodic reaction between FeS and Hg can be used for electrochemical detection of colloidal and particulate FeS in natural waters. Anodic waves that were recorded around -0.45 V (vs Ag/AgCl) in model solutions correspond
Bioresource technology, 102(21), 10154-10157 (2011-09-07)
The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service