Skip to Content
Merck
All Photos(3)

Key Documents

643122

Sigma-Aldrich

Zirconium(IV) oxide

greener alternative

nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ZrO2
CAS Number:
Molecular Weight:
123.22
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

dispersion
nanoparticles

reaction suitability

reagent type: catalyst
core: zirconium

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

5 wt. % in H2O

particle size

<100 nm (BET)

pH

5-6

conductivity

<1.5 mS/cm

greener alternative category

SMILES string

O=[Zr]=O

InChI

1S/2O.Zr

InChI key

MCMNRKCIXSYSNV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product is highly effcient and enhance catalytic efficiency. Click here for more information.

Features and Benefits

No dispersant added

Legal Information

Product of Engi-Mat Co.

Storage Class Code

10 - Combustible liquids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

D Stender et al.
Physical chemistry chemical physics : PCCP, 17(28), 18613-18620 (2015-06-30)
The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C
Mei-Chin Chen et al.
Acta biomaterialia, 13, 344-353 (2014-12-03)
We established near-infrared (NIR)-light-triggered transdermal delivery systems by encapsulating NIR absorbers, silica-coated lanthanum hexaboride (LaB6@SiO2) nanostructures and the cargo molecule to be released in biodegradable polycaprolactone (PCL) microneedles. Acting as a local heat source when exposed to an NIR laser
Linda Szabo et al.
Genome biology, 16, 126-126 (2015-06-17)
The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering
K Nakamura et al.
Journal of the mechanical behavior of biomedical materials, 47, 49-56 (2015-04-05)
The present study analyzed the kinetics of low-temperature degradation (LTD) in zirconia, and evaluated the influence of LTD and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. Bar-shaped zirconia specimens were divided into nine groups and autoclaved
Alireza Abdolrasouli et al.
mBio, 6(3), e00536-e00536 (2015-06-04)
A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service