Skip to Content
Merck
All Photos(2)

Documents

449229

Sigma-Aldrich

Iridium

evaporation slug, diam. × L 0.6 cm × 1.2 cm, 99.9% trace metals basis

Synonym(s):

Iridium black

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ir
CAS Number:
Molecular Weight:
192.22
MDL number:
UNSPSC Code:
12141720
PubChem Substance ID:
NACRES:
NA.23

Assay

99.9% trace metals basis

form

evaporation slug

resistivity

4.71 μΩ-cm

diam. × L

0.6 cm × 1.2 cm

weight

~7.6 g (one slug)

bp

4130 °C (lit.)

mp

2450 °C (lit.)

density

22.65 g/cm3 (lit.)

SMILES string

[Ir]

InChI

1S/Ir

InChI key

GKOZUEZYRPOHIO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

  • Single Atom Iridium Decorated Nickel Alloys Supported on Segregated MoO(2) for Alkaline Water Electrolysis.: The study presents an innovative approach to enhance alkaline water electrolysis using single-atom iridium catalysts, resulting in improved efficiency and stability of the process (Wang et al., 2024).
  • An Aqueous Redox Flow Battery Using CO(2) as an Active Material with a Homogeneous Ir Catalyst.: This paper explores the use of iridium catalysts in an aqueous redox flow battery, utilizing CO2 as an active material to improve energy storage capabilities (Kanega et al., 2023).
  • Kinetic Acceleration of Lithium Polysulfide Conversion via a Copper-Iridium Alloying Catalytic Strategy in Li-S Batteries.: This research highlights the use of copper-iridium alloys to accelerate the conversion of lithium polysulfides, significantly enhancing the performance of lithium-sulfur batteries (Zhai et al., 2022).
  • Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting.: The study demonstrates the integration of high-valence iridium single atoms into bimetal phosphides, leading to highly efficient oxygen evolution and water splitting processes (Yang et al., 2023).

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Rui Cao et al.
Journal of medicinal chemistry, 56(9), 3636-3644 (2013-04-19)
The cellular behavior and toxicity effect of organometallic complexes depend largely on their peripheral ligands. In this study, we have synthesized a series of novel luminescent cationic iridium(III) complexes by tuning the ancillary N(∧)N ligand based on a structure [Ir(ppy)2(N(∧)N)](+)
José Luis Núñez-Rico et al.
Organic letters, 15(8), 2066-2069 (2013-04-12)
Iridium(I) complexes of enantiomerically pure phosphine-phosphite ligands ([Ir(Cl)(cod)(P-OP)]) efficiently catalyze the enantioselective hydrogenation of diverse C═N-containing heterocyclic compounds (benzoxazines, benzoxazinones, benzothiazinones, and quinoxalinones; 25 examples, up to 99% ee). A substrate-to-catalyst ratio as high as 2000:1 was reached.
Yuyang Zhou et al.
Chemical communications (Cambridge, England), 49(31), 3230-3232 (2013-03-14)
Five iridium(III) complexes with two N-heterocyclic carbene (NHC) ligands and an ancillary ligand have been designed and successfully synthesized. With multicolor photoluminescence and low toxicity, these carbene complexes were tested, for the first time, as living cell imaging reagents and
Hana Woo et al.
Journal of the American Chemical Society, 135(12), 4771-4787 (2013-03-06)
Despite the promising photofunctionalities, phosphorescent probes have been examined only to a limited extent, and the molecular features that provide convenient handles for controlling the phosphorescence response have yet to be identified. We synthesized a series of phosphorescence zinc sensors
Le Guo et al.
Organic letters, 15(5), 1144-1147 (2013-02-16)
The first α-alkylation of unactivated amides with primary alcohols is described. An effective and robust iridium pincer complex has been developed for selective α-alkylation of tertiary and secondary acetamides involving a "borrowing hydrogen" methodology. The method is compatible with alcohols

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service