440159
3-(Trimethoxysilyl)propyl methacrylate
98%
Synonym(s):
Silane A174, [3-(Methacryloyloxy)propyl]trimethoxysilane
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Linear Formula:
H2C=C(CH3)CO2(CH2)3Si(OCH3)3
CAS Number:
Molecular Weight:
248.35
Beilstein:
1952435
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23
Recommended Products
Quality Level
Assay
98%
form
liquid
impurities
1% methyl alcohol from hydrolysis
refractive index
n20/D 1.431 (lit.)
bp
190 °C (lit.)
density
1.045 g/mL at 25 °C (lit.)
SMILES string
CO[Si](CCCOC(=O)C(C)=C)(OC)OC
InChI
1S/C10H20O5Si/c1-9(2)10(11)15-7-6-8-16(12-3,13-4)14-5/h1,6-8H2,2-5H3
InChI key
XDLMVUHYZWKMMD-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) is widely used as a monomer and as a coupling agent in polymerization reactions. It copolymerized with other monomers, such as styrene or acrylates, to produce polymer films with improved mechanical properties and adhesion to various substrates. It also improves the stability of the polymer to UV radiation. Additionally, TMSPMA is also used as a crosslinking agent in polymer gels, as it reacts with other functional groups, such as hydroxyl or carboxyl groups, to form stable covalent bonds that improve the mechanical properties of the polymer. Furthermore, TMSPMA has also been used in various fields which include, lithium-ion batteries, engineering applications dental restorative materials, and various other biomedical applications.
Application
3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) can be used as:
- A linker molecule to synthesize a scaffold based on a TMSPMA-polyhedral oligomeric silsesquioxane (POSS) hybrid for potential tissue engineering applications.
- A coupling agent in the preparation of visible-light-curable urethane-modified epoxy acrylate/SiO2 composites to improve the adhesion between the filler, SiO2 nanoparticles, and the resin matrix. These composites are further applicable as dental restorative materials.
- A monomer to synthesize a polymer electrolyte material for use in lithium-ion batteries.
- A silane coupling agent for the modification of TiO2 nanoparticles. TMPSM-modified nano-TiO2 shows excellent stability in water which makes it suitable for polymer nanocomposite processing.
- A monomer in the synthesis of reactive block copolymers via atom transfer radical polymerization. These block copolymers can be used to construct a variety of hybrid nanomaterials.
Storage Class Code
10 - Combustible liquids
WGK
WGK 1
Flash Point(F)
197.6 °F - closed cup
Flash Point(C)
92 °C - closed cup
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Juyeol Bae et al.
Nature communications, 10(1), 3209-3209 (2019-07-22)
Liquid foam consists of liquid film networks. The films can be thinned to the nanoscale via evaporation and have potential in bottom-up material structuring applications. However, their use has been limited due to their dynamic fluidity, complex topological changes, and
José Luís Dores-Sousa et al.
Analytica chimica acta, 1124, 176-183 (2020-06-15)
This study targets the synthesis of high external-porosity poly(styrene-co-divinylbenzene) monolithic support structures with macropore and globule sizes in the sub-micron range, aiming at the realization of high-speed and high-resolution gradient separations of intact proteins and peptides. The thermodynamic and kinetic
Guangwei Lu et al.
ACS omega, 5(30), 19255-19267 (2020-08-11)
In this study, organically modified montmorillonite (OMMT) was prepared by modifying MMT with a cationic surfactant cetyltrimethylammonium bromide (CTAB). The obtained OMMT of different loading contents (1, 2, 4, 6, and 8 wt %) was melt-blended with poly(acrylonitrile-co-butadiene-co-styrene) (ABS) to
Hassan Y Hijazi et al.
Journal of chromatography. A, 1617, 460824-460824 (2020-01-26)
A tailor-made porous molecularly imprinted polymer (MIP) thin-film was prepared by in situ photo-radical polymerization on a glass slide and used as a microextraction adsorbent. Detection was carried out using gas chromatography-mass spectrometry (GC-MS) to afford a method suitable for
Jiangdong Dai et al.
Journal of hazardous materials, 205-206, 179-188 (2012-01-21)
In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service