Skip to Content
Merck
All Photos(1)

Key Documents

278424

Sigma-Aldrich

Poly(vinylsulfonic acid, sodium salt) solution

30-40 wt. % in H2O, technical grade

Synonym(s):

PVSA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C2H3NaO3S)n
CAS Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

grade

technical grade

Quality Level

form

liquid

concentration

30-40 wt. % in H2O

refractive index

n20/D 1.389

density

1.267 g/mL at 25 °C

SMILES string

[Na]OS(=O)(=O)C=C

InChI

1S/C2H4O3S.Na/c1-2-6(3,4)5;/h2H,1H2,(H,3,4,5);/q;+1/p-1

InChI key

BWYYYTVSBPRQCN-UHFFFAOYSA-M

Application

Poly(vinylsulfonicacid, sodium salt) (PVSA) can be used:

  • In the preparation of superabsorbent semi-IPN (interpenetrating polymer network) hydrogel.
  • As a solid electrolyte for proton conduction in the fabrication of an all-solid-supercapacitor.
  • As a crystallization controlling agent in the preparation of high-quality crystals of porous coordination polymers(CP). PVSA regulates not only the size and structure of the crystals but also their preference orientation, resulting in CP channel alignment in the bulk powdery state.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jitka Caslavska et al.
Electrophoresis, 27(23), 4618-4630 (2006-12-01)
Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic
Paul McDonald et al.
Biotechnology and bioengineering, 102(4), 1141-1151 (2008-11-26)
We evaluated the potential for polyelectrolyte induced precipitation of antibodies to replace traditional chromatography purification. We investigated the impact of solution pH, solution ionic strength and polyelectrolyte molecular weight on the degree of precipitation using the anionic polyelectrolytes polyvinylsulfonic acid
A Gambhir et al.
Applied biochemistry and biotechnology, 96(1-3), 249-257 (2002-01-11)
Immobilization of urease and glutamate dehydrogenase enzymes in electrochemically prepared polypyrrole-polyvinyl sulfonate films (PPY-PVS) was carried out using physical adsorption and electrochemical entrapment techniques. Detailed studies on optimum pH, Fourier transform infrared spectroscopy, cyclic voltammetry, and scanning electron microscopy of
Krasimir Vasilev et al.
Nanotechnology, 21(21), 215102-215102 (2010-05-01)
This paper presents a novel and facile method for the generation of efficient antibacterial coatings which can be applied to practically any type of substrate. Silver nanoparticles were stabilized with an adsorbed surface layer of polyvinyl sulphonate (PVS). This steric
Nezaket Dolmaci et al.
Artificial cells, blood substitutes, and immobilization biotechnology, 40(4), 275-279 (2012-01-18)
A new amperometric biosensor was developed for determining hypoxanthine in fish meat. Xanthine oxidase with pyrrole and polyvinylsulphonate was immobilized on the surface of a platinum electrode by electropolymerization. The determination of xanthine-hypoxanthine was performed by means of oxidation of

Articles

Recently, layer-by-layer (LbL) assembly has emerged as a versatile, gentle and, simple method for immobilization of functional molecules in an easily controllable thin film morphology.1,2 In this short review, we introduce recent advances in functional systems fabricated by using the mild, yet adaptable LbL technique.

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service