Skip to Content
Merck
All Photos(1)

Documents

791342

Sigma-Aldrich

Silica, nanoparticle dispersion in water

<50 nm (DLS), triethoxylpropylaminosilane functionalized

Synonym(s):

NH2 functionalized NPs

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352302
NACRES:
NA.23

form

dispersion
nanoparticles

shelf life

1 yr

concentration

in water (Dispersion)

particle size

<50 nm (DLS)

functional group

amine

storage temp.

20-25°C

Looking for similar products? Visit Product Comparison Guide

General description

Composition of nanoparticles non-crystalline colloidal SiO2 particles
Dispersion loading and medium (27 ± 3) wt.-% in water
Particle size d90 (volume distribution; DLS) < 50 nm
pH 2 ± 1
Density (1.2 ± 0.1) g/l
Primary particle size < 20 nm
Surface modification using Triethoxylpropylaminosilane

Application

Silica nanoparticles play a crucial role in biotechnology including bone engineering and drug delivery. The amino functionality present on the surface of these materials provide a synthetic handle for further modification and conjugation to target moieties. Amino functionalized silica particles can be used for applicaitons including in vivo gene delivery, nanocomposite formation, and formation of biofilms.

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B - Skin Sens. 1

Storage Class Code

8B - Non-combustible corrosive hazardous materials

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Kazuki Murai et al.
Physical chemistry chemical physics : PCCP, 15(27), 11454-11460 (2013-06-12)
We investigated the drug releasing behavior of a novel nanocarrier system, utilizing a peptide to act as a nanogate to the mesopore, on a mesoporous silica nanoparticle. The surface peptide on mesoporous silica displayed pH-dependant mesopore cap-uncap switching behavior, enabled
Indrajit Roy et al.
Proceedings of the National Academy of Sciences of the United States of America, 102(2), 279-284 (2005-01-05)
This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified
Dhruba J Bharali et al.
Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11539-11544 (2005-07-30)
This article reports on the application of organically modified silica (ORMOSIL) nanoparticles as a nonviral vector for efficient in vivo gene delivery. Highly monodispersed, stable aqueous suspension of nanoparticles, surface-functionalized with amino groups for binding of DNA, were prepared and
Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process
Kang, S..;
Polymer, 42(3), 879-887 (2000)
Pingli He et al.
Langmuir : the ACS journal of surfaces and colloids, 20(3), 722-729 (2005-03-19)
Heme protein hemoglobin (Hb) or myoglobin (Mb) and silica nanoparticles in a variety of charge states were assembled layer-by-layer into films on solid surfaces to investigate the driving forces for film assembly. Cyclic voltammetry (CV), quartz crystal microbalance (QCM), X-ray

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service