Accéder au contenu
Merck
  • The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.

The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.

The Journal of nutritional biochemistry (2020-01-18)
Sisir Kumar Barik, Wendy R Russell, Kim M Moar, Morven Cruickshank, Lorraine Scobbie, Gary Duncan, Nigel Hoggard
RÉSUMÉ

The hypoglycaemic effects of two Ribes sp. i.e., anthocyanin-rich black currants (BC) were compared to green currants (GC), which are low in anthocyanins to establish which compounds are involved in the regulation of postprandial glycaemia. We determined the effect of the currants on inhibiting carbohydrate digestive enzymes (α-amylase, α-glucosidase), intestinal sugar absorption and transport across CaCo-2 cells. The digestion of these currants was modelled using in vitro gastrointestinal digestion (IVGD) to identify the metabolites present in the digested extracts by LC-MS/MS. Freeze-dried BC and IVDG extracts inhibited yeast α-glucosidase activity (P<.0001) at lower concentrations than acarbose, whereas GC and IVDG GC at the same concentrations showed no inhibition. BC and GC both showed significant inhibitory effects on salivary α-amylase (P<.0001), glucose uptake (P<.0001) and the mRNA expression of sugar transporters (P<.0001). Taken together this suggests that the anthocyanins which are high in BC have their greatest effect on postprandial hyperglycaemia by inhibiting α-glucosidase activity. Phytochemical analysis identified the phenolics in the currants and confirmed that freeze-dried BC contained higher concentrations of anthocyanins compared to GC (39.80 vs. 9.85 g/kg dry weight). Specific phenolics were also shown to inhibit salivary α-amylase, α-glucosidase, and glucose uptake. However, specific anthocyanins identified in BC which were low in GC were shown to inhibit α-glucosidase. In conclusion the anthocyanins in BC appear to regulate postprandial hyperglycaemia primarily but not solely by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters which together could lower the associated risk of developing type-2 diabetes.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Pénicilline-streptomycine, Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Réactif TRI®, For processing tissues, cells cultured in monolayer or cell pellets
Sigma-Aldrich
L-glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Pepsine from porcine gastric mucosa, powder, ≥250 units/mg solid
Sigma-Aldrich
Milieu essentiel minimum d′Eagle, With Earle′s salts and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Sodium pyruvate solution, 100 mM, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
α-Glucosidase from Saccharomyces cerevisiae, Type I, lyophilized powder, ≥10 units/mg protein (using p-nitrophenyl α-D-glucoside as substrate.)
Sigma-Aldrich
Chlorure de potassium, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Gallic acid, 97.5-102.5% (titration)
Sigma-Aldrich
α-Amylase from porcine pancreas, Type VI-B, ≥5 units/mg solid
Sigma-Aldrich
Resvératrol, ≥99% (HPLC)
Sigma-Aldrich
Chlorogenic acid, ≥95% (titration)
Sigma-Aldrich
Pancréatine from porcine pancreas, 4 × USP specifications
Sigma-Aldrich
4-Hydroxybenzaldéhyde, 98%
Sigma-Aldrich
Acarbose, ≥95% (HPLC)
Sigma-Aldrich
α-Amylase from human saliva, Type IX-A, lyophilized powder, 1,000-3,000 units/mg protein
Sigma-Aldrich
Syringic acid, ≥95% (HPLC)
Sigma-Aldrich
3,4-Dihydroxybenzaldehyde, 97%
Sigma-Aldrich
Phloretin, ≥99%
Supelco
Delphinidin chloride, analytical standard
Sigma-Aldrich
Cyanidin chloride, ≥95% (HPLC)
Sigma-Aldrich
Vanillic acid, purum, ≥97.0% (HPLC)
Supelco
Ferulic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Protocatechuic acid, primary reference standard