Direkt zum Inhalt
Merck
  • Design of donor-acceptor star-shaped oligomers for efficient solution-processible organic photovoltaics.

Design of donor-acceptor star-shaped oligomers for efficient solution-processible organic photovoltaics.

Faraday discussions (2014-10-04)
S A Ponomarenko, Y N Luponosov, J Min, A N Solodukhin, N M Surin, M A Shcherbina, S N Chvalun, T Ameri, C Brabec
ZUSAMMENFASSUNG

This contribution describes recent progress in the design, synthesis and properties of solution-processible star-shaped oligomers and their application in organic photovoltaics. Even though alternative chemistry has been used to design such oligomers, the most successful approach is based on a triphenylamine donor branching center, (oligo)thiophene conjugated spacers and dicyanovinyl acceptor groups. These are mainly amorphous low band-gap organic semiconductors, though crystalline or liquid crystalline ordering can sometimes be realized. It was shown that the solubility, thermal behavior and structure of such molecules in the bulk strongly depend on the presence and position of alkyl groups, as well as on their length. The photovoltaic properties of solution-processed molecules of this type are now approaching 5% which exceeds those of vacuum-sublimed devices. The design rules and future perspectives of this class of organic photovoltaic molecules are discussed.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Phosphor(V)-oxychlorid, ReagentPlus®, 99%
Sigma-Aldrich
Malonsäuredinitril, ≥99%
Sigma-Aldrich
2,5-Dihydroxybenzoesäure, 98%
Sigma-Aldrich
Phosphor(V)-oxychlorid, 99.999%
Supelco
2,5-Dihydroxybenzoesäure, matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
Tris(4-bromphenyl)amin, 98%
Sigma-Aldrich
Malonsäuredinitril, Arxada quality, ≥99.0% (calculated, GC, KF)
Supelco
2,5-Dihydroxybenzoesäure, matrix substance for MALDI-MS, ≥99.5% (HPLC), Ultra pure
Supelco
2,5-Dihydroxybenzoesäure, analytical standard