Direkt zum Inhalt
Merck
  • Interspecies comparison of hepatic metabolism of six newly synthesized retinoid X receptor agonistic compounds possessing a 6-[N-ethyl-N-(alkoxyisopropylphenyl)amino]nicotinic acid skeleton in rat and human liver microsomes.

Interspecies comparison of hepatic metabolism of six newly synthesized retinoid X receptor agonistic compounds possessing a 6-[N-ethyl-N-(alkoxyisopropylphenyl)amino]nicotinic acid skeleton in rat and human liver microsomes.

Drug development and industrial pharmacy (2013-06-21)
Yoshiki Murakami, Yasumasa Shimizu, Akemi Ogasawara, Satoshi Ueshima, Mariko Nakayama, Kohei Kawata, Hiroki Kakuta, Tetsuya Aiba
ZUSAMMENFASSUNG

The hepatic metabolism of six compounds newly synthesized as retinoid X receptor agonists was characterized in rat and human liver microsomes to examine the relationship between their hepatic metabolism profiles and side chain structures, considering the interspecies difference. The compounds used have a 6-[N-ethyl-N-(3-alkoxy-4-isopropylphenyl)amino]nicotinic or 6-[N-ethyl-N-(4-alkoxy-3-isopropylphenyl)amino]nicotinic acid skeleton, in which the isopropoxy, isobutoxy or cyclopropylmethoxy group is employed for the alkoxy group. These compounds were incubated with the microsomes, and their Michaelis--Menten parameters were determined. The incubation study was also performed with various cytochrome P450 (CYP) inhibitors to examine their susceptibilities to the inhibitors. In addition, a molecular docking simulation was conducted to assess the compound's spatial configuration with the CYP isoform when necessary. The Michaelis--Menten parameters determined are comparable between rats and humans for the compounds having 3-isobutoxy, 4-isobutoxy, 4-isopropoxy and 4-cyclopropylmethoxy groups. However, it was indicated that all compounds except that having the 3-isobutoxy group are metabolized in a different manner between rats and humans. That is, the extent of the contribution of each CYP isozyme is different between those two species. A molecular docking simulation showed that the spatial configuration of the compound to be associated with CYP2D6 markedly changes depending on whether the isobutoxy group is situated at the 3- or 4-position. A slight difference in the side chain structures markedly alters the compound's metabolic profile, which amplifies the interspecies difference regarding the profile, increasing the difficulty in characterizing the profile in humans with the structural-property relationship and interspecies extrapolation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Supelco
Ethanol -Lösung, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ketoconazol, 99.0-101.0% (EP, titration)
Sigma-Aldrich
Chinidin, anhydrous
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Chinidin, crystallized, ≥98.0% (dried material, NT)
USP
Ketoconazol, United States Pharmacopeia (USP) Reference Standard
Supelco
Ketoconazol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Xanthotoxin, analytical standard
Supelco
Sulfadimethoxin, VETRANAL®, analytical standard
Supelco
Sulfadimethoxin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sulfadimethoxin, 98.0-102.0%
Ketoconazol, European Pharmacopoeia (EP) Reference Standard
Supelco
Xanthotoxin, analytical standard
Sulfadimethoxin für die Peakidentifizierung, European Pharmacopoeia (EP) Reference Standard