Direkt zum Inhalt
Merck
  • Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586.

Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586.

Colloids and surfaces. B, Biointerfaces (2013-01-29)
Wanhua Feng, Simon Swift, Naresh Singhal
ZUSAMMENFASSUNG

The interaction between bacteria and surfaces is central to many environmental, industrial and medical applications. Surfactants are commonly used in these applications and can potentially influence the bacterium/surface interaction. The effect of surfactants upon bacterial cell surface thermodynamic properties was examined using a combination of contact angle measurements and LW-AB surface free energy calculation. Two bacterial strains, hydrophilic Pseudomonas putida 852 and hydrophobic Rhodococcus erythropolis 3586, and two surfactant types, the anionic biosurfactant rhamnolipid and the non-ionic chemical surfactant tergitol, were examined. The study demonstrated that surfactant treatment could modify cell surface tension parameters including Lifshitz-van der Waals (γ(LW)), electron-donor (γ(-)) and electron-acceptor (γ(+)) and thereby the bacterial cell hydrophobicity, depending on the surfactant type and concentration and the bacterial surface characteristics. Rhamnolipid and tergitol were found to increase P. putida 852 hydrophobicity, but decrease the hydrophobicity of R. erythropolis 3586. The extent of change was dependent on surfactant concentration. Among the three surface tension parameters, γ(-) was found to be the most important in predicting bacterial cell hydrophobicity.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Pluronic® F-127, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Poloxamer 188-Lösung, 10%, sterile-filtered, BioReagent, suitable for insect cell culture
Sigma-Aldrich
Kolliphor P 188, solid
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~5,800
Sigma-Aldrich
Kolliphor P 188
Sigma-Aldrich
Poloxamer 407, purified, non-ionic
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~2,900
Sigma-Aldrich
Kolliphor P 407, oxyethylene 71.5-74.9 %
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~14,600
Sigma-Aldrich
Poly(propylenglycol)-block-poly(ethylenglycol)-block-poly(propylenglycol), average Mn ~3,300
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~4,400
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~1,900
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~1,100
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~2,000
Sigma-Aldrich
Poly(ethylenglycol)-block-poly(propylenglycol)-block-poly(ethylenglycol), average Mn ~8,400
Sigma-Aldrich
Kolliphor P 407 mikro
Sigma-Aldrich
Synperonic® PE P105, surfactant
Sigma-Aldrich
Kolliphor P 188 Micro
Sigma-Aldrich
Poly(propylenglycol)-block-poly(ethylenglycol)-block-poly(propylenglycol), average Mn ~2,000
Sigma-Aldrich
Synperonic® PE/P84
Sigma-Aldrich
Synperonic® F 108, surfactant, non-ionic