Direkt zum Inhalt
Merck

Dissection of glutathione conjugate turnover in yeast.

Phytochemistry (2009-11-10)
Jana Wünschmann, Matthias Krajewski, Thomas Letzel, Eva M Huber, Alexander Ehrmann, Erwin Grill, Klaus J Lendzian
ZUSAMMENFASSUNG

Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a gamma-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a gamma-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the gamma-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the gamma-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced gamma-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Monochlorbiman, suitable for fluorescence, ≥70.0% (HPCE)