Direkt zum Inhalt
Merck

G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program.

Cell reports (2020-11-05)
Nathaniel W Mabe, Nina Marie G Garcia, Shayna E Wolery, Rachel Newcomb, Ryan C Meingasner, Brittany A Vilona, Ryan Lupo, Chao-Chieh Lin, Jen-Tsan Chi, James V Alvarez
ZUSAMMENFASSUNG

Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
RG108, ≥98% (HPLC), powder
Sigma-Aldrich
BIX, ≥98% (HPLC)
Sigma-Aldrich
N-Oxalylglycine, ≥98% (HPLC)
Sigma-Aldrich
C646, ≥98% (HPLC)
Sigma-Aldrich
AGK2, ≥97% (HPLC), powder
Sigma-Aldrich
SGC0946, ≥98% (HPLC)
Sigma-Aldrich
PFI-1, ≥98% (HPLC)
Sigma-Aldrich
GSK2801, ≥98% (HPLC)
Sigma-Aldrich
UNC1215, ≥98% (HPLC)