Direkt zum Inhalt
Merck

GF21271025

Beryllium

wire reel, 0.05m, diameter 0.356mm, annealed and clean, 99.7%

Synonym(e):

Beryllium

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise


About This Item

Empirische Formel (Hill-System):
Be
CAS-Nummer:
Molekulargewicht:
9.01
MDL-Nummer:
UNSPSC-Code:
12141501
PubChem Substanz-ID:
NACRES:
NA.23

Assay

99.70%

Form

wire

Selbstzündungstemp.

1198 °F

Hersteller/Markenname

Goodfellow 212-710-25

Widerstandsfähigkeit

4.46 μΩ-cm, 20°C

L × Durchm.

0.05 m × 0.356 mm

bp

2970 °C (lit.)

mp (Schmelzpunkt)

1278 °C (lit.)

Dichte

1.85 g/mL at 25 °C (lit.)

SMILES String

[Be]

InChI

1S/Be

InChIKey

ATBAMAFKBVZNFJ-UHFFFAOYSA-N

Suchen Sie nach ähnlichen Produkten? Aufrufen Leitfaden zum Produktvergleich

Allgemeine Beschreibung

For updated SDS information please visit www.goodfellow.com.

Rechtliche Hinweise

Product of Goodfellow

Piktogramme

Skull and crossbonesHealth hazard

Signalwort

Danger

Gefahreneinstufungen

Acute Tox. 3 Oral - Carc. 1B - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT RE 1

Lagerklassenschlüssel

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flammpunkt (°F)

Not applicable

Flammpunkt (°C)

Not applicable


Hier finden Sie alle aktuellen Versionen:

Analysenzertifikate (COA)

Lot/Batch Number

Leider sind derzeit keine COAs für dieses Produkt online verfügbar.

Wenn Sie Hilfe benötigen, wenden Sie sich bitte an Kundensupport

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

L Mangin-Thro et al.
Nature communications, 6, 7705-7705 (2015-07-04)
The pseudo-gap phenomenon in copper oxide superconductors is central to any description of these materials as it prefigures the superconducting state itself. A magnetic intra-unit-cell order was found to occur just at the pseudo-gap temperature in four cuprate high-Tc superconducting
Michael J Brisson et al.
Journal of environmental monitoring : JEM, 8(6), 605-611 (2006-06-13)
Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the
Elijah Thimsen et al.
Nature communications, 5, 5822-5822 (2014-12-20)
Thin films comprising semiconductor nanocrystals are emerging for applications in electronic and optoelectronic devices including light emitting diodes and solar cells. Achieving high charge carrier mobility in these films requires the identification and elimination of electronic traps on the nanocrystal
T Mark McCleskey et al.
Journal of occupational and environmental hygiene, 6(12), 751-757 (2009-11-07)
We compare beryllium to H+ and show that beryllium can displace H+ in many "strong hydrogen bonds" where Be as a "tetrahedral proton" (O-Be-O angle is tetrahedral as opposed to the nearly linear O-H-O angle) is thermodynamically preferred. The strong
D M Hollins et al.
Critical reviews in toxicology, 39 Suppl 1, 1-32 (2009-11-13)
The potential carcinogenicity of beryllium has been a topic of study since the mid-1940s. Since then, numerous scientific and regulatory bodies have assigned beryllium to various categories with respect to its carcinogenicity. Past epidemiologic and animal studies, however, have been

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.