Direkt zum Inhalt
Merck

939374

Sigma-Aldrich

Lithiumacetat Dihydrat

new

≥99.9% trace metals basis

Synonym(e):

Essigsäure Lithiumsalz

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise


About This Item

Lineare Formel:
CH3COOLi · 2H2O
CAS-Nummer:
Molekulargewicht:
102.02
Beilstein:
3564320
MDL-Nummer:

Typ

(High purity Salts)

Qualitätsniveau

Assay

≥99.9% trace metals basis

Form

powder or crystals
solid

Verunreinigungen

≤1000 ppm (trace metals analysis)

Farbe

white to off-white

pH-Wert

≤9.5

mp (Schmelzpunkt)

53-56 °C (lit.)

Löslichkeit

water: soluble

Anionenspuren

chloride (Cl-): ≤20 ppm
sulfate (SO42-): ≤50 ppm

Kationenspuren

Al: <100 ppm
Cu: <100 ppm
Fe: <100 ppm
K: <100 ppm
Mg: <100 ppm
Na: ≤50 ppm
Pb: <100 ppm
Zn: <100 ppm

Anwendung(en)

battery manufacturing

SMILES String

[Li+].[H]O[H].[H]O[H].CC([O-])=O

InChI

1S/C2H4O2.Li.2H2O/c1-2(3)4;;;/h1H3,(H,3,4);;2*1H2/q;+1;;/p-1

InChIKey

IAQLJCYTGRMXMA-UHFFFAOYSA-M

Suchen Sie nach ähnlichen Produkten? Aufrufen Leitfaden zum Produktvergleich

Allgemeine Beschreibung

Lithium acetate dihydrate is a soluble white compound with a one-dimensional structure. Lithium acetate dihydrate has various applications in industries such as pharmaceuticals, ceramics, and research laboratories. It is often utilized as a source of lithium ions in chemical reactions and as a precursor in the synthesis of other lithium compounds.

Anwendung

Lithium acetate dihydrate is a significant salt with a wide range of applications. It is utilized as a component in drug formulation and therapy, as a buffer for DNA and RNA gel electrophoresis, and as an additive or catalyst in textiles and polymer production. Additionally, it serves as a ferromagnetic nanoparticle, catalyst, and precursor material for batteries
Our Lithium acetate dihydrate, with a purity of 99.9% on a trace metals basis, serves as an excellent precursor for batteries and catalysis. Its low trace metals content and anions make it particularly well-suited for these applications.
  • Lithium Iron Pyrophosphate (LiFe1.5P2O7) with monoclinic structures was successfully synthesized using Lithium acetate dihydrate in combination with other metal acetates, in a ratio of Li/Fe/P = 1.05:1.5:2, through a wet-chemical method. Maintaining the appropriate lithium concentration is crucial to prevent stoichiometry loss in the final product. This material has found application as a positive electrode in Lithium-ion batteries. Remarkably, the electrode demonstrates excellent incremental capacity, indicating a stable structure during the initial cycle, with redox peaks observed at 3.33 and 3.22 V versus Li0/Li+
  • LiMn2O4 films were synthesized on Au foil using the sol-gel and spin-coating techniques, employing Lithium acetate dihydrate and manganese acetate tetrahydrate in a Li/Mn ratio of 1.1/2. The particles used had an average size of approximately 300 nm. To investigate the morphological changes during over-discharging, the EC-HS-AFM technique was utilized. The images captured revealed the presence of wrinkle-like and step-like structures on the particle surface. These structures were attributed to stresses induced by structural distortion during the phase transformation from cubic (LiMn2O4) to tetragonal (Li2Mn2O4). The formation of the Li2Mn2O4 phase was confirmed through ex situ XRD analysis. Furthermore, by analyzing the EC-HS-AFM images, the particle surface area was quantitatively extracted as a function of potential, providing insights into the irreversible expansion/contraction behavior of the particles
  • Cobalt-free cathodes, specifically Mg and Zr modified LiNi0.5Mn1.5O4 (LNMO), were synthesized using Lithium acetate dihydrate and other metal acetates via a citric acid sol-gel method. The modifications aimed to improve the electrochemical performance of the cathode, particularly at high temperatures, by limiting Mn dissolution and adjusting interstitial sites. This modification resulted in increased stability of the cathode, extending the cycle life to 1000 cycles at both 25 and 50 °C

Leistungsmerkmale und Vorteile

  • Water soluble
  • Medium purity (99.9%)
  • Low trace metals in ppm level
  • Cost effective
  • Low Chloride and sulfate levels

Lagerklassenschlüssel

11 - Combustible Solids

WGK

WGK 1

Flammpunkt (°F)

Not applicable

Flammpunkt (°C)

Not applicable


Hier finden Sie alle aktuellen Versionen:

Analysenzertifikate (COA)

Lot/Batch Number

Leider sind derzeit keine COAs für dieses Produkt online verfügbar.

Wenn Sie Hilfe benötigen, wenden Sie sich bitte an Kundensupport

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

Novel Lithium Iron Pyrophosphate (LiFe1.5P2O7) as a Positive Electrode for Li-Ion Batteries
Ramana C V, et al.
Chemistry of Materials, 19, 5319?5324-5319?5324 (2007)
Operando Imaging of Over-Discharge-Induced Surface Morphology Evolutions of LiMn2O4 Submicron-Sized Particles by Electrochemical High-Speed Atomic Force Microscopy
Yang P, et al.
Langmuir, 39, 13801?13806-13801?13806 (2023)
Evaluation of Electronic?Ionic Transport Properties of a Mg/Zr-Modified LiNi0.5Mn1.5O4 Cathode for Li-Ion Batteries
Balducci L, et al.
ACS Applied Materials & Interfaces, 15, 55620?55632-55620?55632 (2023)
Anhydrous Lithium Acetate Polymorphs and Its Hydrates: Three-Dimensional Coordination Polymers
Casado M F J, et al.
Crystal Growth & Design, 11, 1021-1032 (2011)

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.