Direkt zum Inhalt
Merck

930946

Sigma-Aldrich

Lithiumnitrat

greener alternative

battery grade, ≥99.9% trace metals basis

Synonym(e):

Lithium salt of nitric acid

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise


About This Item

Lineare Formel:
LiNO3
CAS-Nummer:
Molekulargewicht:
68.95
MDL-Nummer:
UNSPSC-Code:
12352302
NACRES:
NA.21

Qualitätsniveau

Qualität

battery grade

Assay

≥99.9% trace metals basis

Form

powder

Grünere Alternativprodukt-Eigenschaften

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Verunreinigungen

≤0.5 wt. % H2O
≤1000 ppm (trace metals analysis)

mp (Schmelzpunkt)

264 °C (lit.)

Löslichkeit

H2O: soluble (highly soluble(lit.))
acetone: soluble ((lit.))
alcohols: soluble ((lit.))

Anionenspuren

chloride (Cl-): ≤500 ppm
sulfate (SO42-): ≤200 ppm

Anwendung(en)

battery manufacturing

Grünere Alternativprodukt-Kategorie

SMILES String

[Li+].[O-][N+]([O-])=O

InChI

1S/Li.NO3/c;2-1(3)4/q+1;-1

InChIKey

IIPYXGDZVMZOAP-UHFFFAOYSA-N

Suchen Sie nach ähnlichen Produkten? Aufrufen Leitfaden zum Produktvergleich

Allgemeine Beschreibung

Anhydrous lithium nitrate is a white, crystalline salt. The anhydrous form is hygroscopic and deliquescent. The salt is soluble in water, ethanol, methanol, pyridine, ammonia, and acetone. Like some other metal nitrates, lithium nitrate has a low melting point of only 264 °C, and decomposes above 600 °C. Because of its low melting point, it is used to produce low-melting fused-salt mixtures in ceramics and heat-exchange media.
Lithium nitrate is produced by the acid-base reaction between nitric acid and lithium carbonate, which evolves carbon dioxide and water. The resulting material is dried, purified, and heated to form the anhydrous product.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

Anwendung

Researchers and manufacturers use lithium nitrate in the preparation of many lithium compounds, most notably lithium nickel oxide (LiNiO2) and lithium manganese oxide (LiMn2O4). One common strategy for synthesizing these lithium metal oxides involves a high-temperature reaction of lithium nitrate with a metal carbonate, like nickel carbonate, or with a metal oxide, like manganese oxide. At temperatures above 650 °C, lithium nitrate evolves oxygen gas and nitrogen dioxide gas and decomposes through a complex process into lithium oxide, which reacts with the metal precursors to form the tertiary or quaternary lithium metal oxides. Researchers have used this technique to prepare exciting new materials, like LiAl0.25Ni0.75O2 as a cathode material in lithium-ion batteries and LiGa5O8 as a phosphor for optical information storage.
Because lithium nitrate is soluble in water, researchers also use lithium nitrate in the synthesis of lithium compounds using a host of solution-based chemistries. For example, microwave-induced combustion using solutions of lithium nitrate has yielded olivine-type lithium iron phosphate (LiFePO4), lithium cobalt oxide (LiCoO2), and lithium titanium oxides (ex. Li4Ti5O12 and Li2TiO3). Hydrothermal processing, sol-gel processing, spray pyrolysis, co-precipitation pre-processing, and Li emulsion-drying methods have all used lithium nitrate as a reactant to form lithium metal oxides. These techniques can yield controlled particle size, grain size, crystallinity, or facilitate the introduction of dopants for engineering the properties of the products, often explored for next-generation lithium-ion batteries.
Our battery grade lithium nitrate with ≥99.9% trace metals purity and low chloride and sulfate impurities, is designed as a precursor for cathode materials for lithium-ion batteries.

Piktogramme

Flame over circleExclamation mark

Signalwort

Warning

Gefahreneinstufungen

Acute Tox. 4 Oral - Eye Irrit. 2 - Ox. Sol. 3

Lagerklassenschlüssel

5.1B - Oxidizing hazardous materials

WGK

WGK 1

Flammpunkt (°F)

Not applicable

Flammpunkt (°C)

Not applicable


Hier finden Sie alle aktuellen Versionen:

Analysenzertifikate (COA)

Lot/Batch Number

Die passende Version wird nicht angezeigt?

Wenn Sie eine bestimmte Version benötigen, können Sie anhand der Lot- oder Chargennummer nach einem spezifischen Zertifikat suchen.

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

A review of recent developments in the synthesis procedures of lithium iron phosphate powders.
Jugovic D, et al.
Journal of Power Sources, 190, 538-544 (2009)
Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4
Tarascon J M, et al.
Journal of the Electrochemical Society, 141, 1421-1421 (1994)
Synthesis and Characterization of LiAI1/4Ni3/4O2 (R3m) for Lithium-Ion (Shuttlecock) Batteries.
Ohzuku T, et al.
Journal of the Electrochemical Society, 142, 4033-4033 (1995)
Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells
Ohzuku T, et al.
Journal of the Electrochemical Society, 140, 1862-1862 (1993)
Feng Liu et al.
Scientific reports, 3, 1554-1554 (2013-03-28)
In conventional photostimulable storage phosphors, the optical information written by x-ray or ultraviolet irradiation is usually read out as a visible photostimulated luminescence (PSL) signal under the stimulation of a low-energy light with appropriate wavelength. Unlike the transient PSL, here

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.