Ara-G is converted by cellular kinases to the active 5′-triphosphate, Ara-GTP. This active form of Ara-G induces apoptosis and inhibits DNA synthesis. Ara-G is also an antineoplastic and antimetabolite.
Biochem/physiol Actions
Ara-G is an inducer of apoptosis; inhibitor of DNA synthesis; antineoplastic; and antimetabolite.
Ara-G is an inducer of apoptosis; inhibitor of DNA synthesis; antineoplastic; and antimetabolite. Ara-G is converted by cellular kinases to the active 5′-triphosphate, Ara-GTP. Incorporation of Ara-GTP into DNA leads to inhibition of DNA synthesis and apoptosis.
Biochemical and biophysical research communications, 427(3), 456-460 (2012-08-23)
Our previous data from a human leukemic cell line made resistant to the nucleoside analog (NA) 9-β-D-arabinofuranosylguanine (AraG) revealed a massive upregulation of fetal hemoglobin (HbF) genes and the ABCB1 gene coding for the multidrug resistance P-glycoprotein (P-gp). The expression
The 9-beta-D-arabinofuranosylguanine (ara-G), an active compound of nelarabine, demonstrates potent cytotoxicity specifically on T-cell malignancies. In cells, ara-G is phosphorylated to ara-G triphosphate (ara-GTP), which is subsequently incorporated into DNA, thereby inhibiting DNA synthesis. Because ara-GTP is crucial to ara-G's
Forodesine and nelarabine (the pro-drug of ara-G) are 2 nucleoside analogues with promising anti-leukemic activity. To better understand which pediatric patients might benefit from forodesine or nelarabine (ara-G) therapy, we investigated the in vitro sensitivity to these drugs in 96
Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging, 13(5), 812-818 (2010-09-15)
9-(β-D-Arabinofuranosyl)guanine (AraG) is a guanosine analog that has a proven efficacy in the treatment of T-cell lymphoblastic disease. To test the possibility of using a radiofluorinated AraG as an imaging agent, we have synthesized 2'-deoxy-2'-[(18)F]fluoro-9-β-D-arabinofuranosylguanine ([(18)F]F-AraG) and investigated its uptake
Cancer chemotherapy and pharmacology, 68(3), 583-591 (2010-11-27)
To characterize resistance mechanisms to the nucleoside analog 9-β-D-arabinofuranosylguanine (AraG) in the T-cell acute lymphoblastic leukemia cell line MOLT-4 and its AraG-resistant variant. A gene expression microarray analysis was performed, as well as gene expression and enzyme activity measurements of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.