Skip to Content
Merck
All Photos(1)

Documents

907634

Sigma-Aldrich

Gold nanorods

25 nm diameter, FITC and carboxyl functionalized, powder

Synonym(s):

Dye labeled gold nanoparticles, FITC labeled gold nanorods, FITC tagged gold nanorods, Fluorescent labeled gold nanoparticles

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12162002
NACRES:
NA.23

form

nanorod
powder

storage temp.

2-8°C

Application

Owing to size and shape dependent quantum effects, the gold nanoparticles exhibit unique surface plasmon resonance absorption, scattering, fluorescence, and photothermal properties which render them suitable for applications in catalysis, chemical sensing, biosensing , cellular and bioimaging, drug and gene delivery, and photothermal therapy. The fluorescent labeling of gold nanoparticles have been shown to cause emission enhancement in fluorophores. This makes the fluorescence tagged gold nanoparticles a dual mode nanoprobe for drug delivery and bioimaging applications.

Legal Information

Product of Nanopartz Inc.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Fluorescently Labeled Gold Nanoparticles with Minimal Fluorescence Quenching
The Journal of Physical Chemistry C, 114, 17446-17446 (2010)
Byoungjin Kim et al.
Nature nanotechnology, 5(6), 465-472 (2010-04-13)
Nanoparticles have great potential as controllable drug delivery vehicles because of their size and modular functionality. Timing and location are important parameters when optimizing nanoparticles for delivery of chemotherapeutics. Here, we show that gold nanoparticles carrying either fluorescein or doxorubicin
Xiaohua Huang et al.
Journal of the American Chemical Society, 128(6), 2115-2120 (2006-02-09)
Due to strong electric fields at the surface, the absorption and scattering of electromagnetic radiation by noble metal nanoparticles are strongly enhanced. These unique properties provide the potential of designing novel optically active reagents for simultaneous molecular imaging and photothermal
Gold Nanoparticles for In Vitro Diagnostics.
Wen Zhou et al.
Chemical reviews, 115(19), 10575-10636 (2015-06-27)
Xiaohua Huang et al.
Advanced materials (Deerfield Beach, Fla.), 21(48), 4880-4910 (2009-12-28)
Noble metal nanoparticles are capable of confining resonant photons in such a manner as to induce coherent surface plasmon oscillation of their conduction band electrons, a phenomenon leading to two important properties. Firstly, the confinement of the photon to the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service