Skip to Content
Merck
All Photos(2)

Documents

702048

Sigma-Aldrich

Yttrium(III) oxide, dispersion

greener alternative

10 wt. % in isopropanol, nanoparticles, <100 nm (DLS), ≥99.9% trace metals basis

Synonym(s):

Yttria

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Y2O3
CAS Number:
Molecular Weight:
225.81
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Assay

≥99.9% trace metals basis

form

dispersion
nanoparticles

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

10 wt. % in isopropanol

particle size

<100 nm (DLS)

pH

10±1

viscosity

3.06 (typical)

bp

81-83 °C

mp

−89 °C

density

0.785 g/mL at 25 °C

greener alternative category

SMILES string

O=[Y]O[Y]=O

InChI

1S/3O.2Y

InChI key

SIWVEOZUMHYXCS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency and is intended for Molecular Solar Thermal Energy Storage Systems (MOST). Click here for more information.

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

53.6 °F

Flash Point(C)

12 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sjoerd A Veldhuis et al.
Langmuir : the ACS journal of surfaces and colloids, 28(42), 15111-15117 (2012-10-04)
Typical surface areas of 5 × 5 mm(2) were patterned with high-aspect-ratio micrometer- and submicrometer-sized structures of yttria-stabilized zirconia using a combination of micromolding in capillaries and sol-gel chemistry. The influence of precursor solution concentration and mold geometry on the
Cheol Jang et al.
Optics express, 20(3), 2143-2148 (2012-02-15)
We demonstrate the optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm to create a highly efficient emitting layer in mirror-type self-emissive displays. The propagating surface plasmon mode induced between the dielectric layer (MgO) and the Ag nanofilm
Timur Sh Atabaev et al.
Journal of biomedical materials research. Part A, 100(9), 2287-2294 (2012-04-14)
Increased demand of environment protection encouraged scientists to design products and processes that minimize the use and generation of hazardous substances. This work presents comprehensive result of large-scale fabrication and investigation of red-to-green tunable submicron spherical yttria particles codoped with
Ian N Stanton et al.
Dalton transactions (Cambridge, England : 2003), 41(38), 11576-11578 (2012-09-04)
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished
Guangqing Guo et al.
Dental materials : official publication of the Academy of Dental Materials, 28(4), 360-368 (2011-12-14)
To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing

Articles

As with all types of fuel cells, a Solid Oxide Fuel Cell (SOFC) is capable of efficiently transforming chemical energy into electrical energy.

Magnetic materials find diverse applications from data storage to renewable energy.

Magnetic materials find diverse applications from data storage to renewable energy.

Magnetic materials find diverse applications from data storage to renewable energy.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service