484059
Silver
nanopowder, <150 nm particle size, 99% trace metals basis
Sign Into View Organizational & Contract Pricing
All Photos(4)
About This Item
Recommended Products
Assay
99% trace metals basis
form
nanopowder
resistivity
1.59 μΩ-cm, 20°C
particle size
<150 nm
bp
2212 °C (lit.)
mp
960 °C (lit.)
density
10.49 g/cm3 (lit.)
SMILES string
[Ag]
InChI
1S/Ag
InChI key
BQCADISMDOOEFD-UHFFFAOYSA-N
General description
Silver nanoparticles (Ag-NPs) have unique physical and chemical properties such as high thermal and electrical conductivity, chemical stability, catalytic activity, surface-enhanced Raman scattering, and nonlinear optical behavior. Ag-NPs are widely used in the fields of electronics, catalysis, and medicine.
Application
Silver can be used as a catalyst for the direct electroreduction ofcarbon dioxide.
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Toxicology in vitro : an international journal published in association with BIBRA, 24(3), 872-878 (2009-12-09)
Silver nanoparticles (AgNPs) are widely applied in many household products and medical uses. However, studies on the effects of AgNPs on human health and environmental implications are in the beginning stage. Furthermore, most data on the toxicity of AgNPs have
Highly selective and scalable CO2 to CO - Electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration
Nano Energy, 76, 105030-105030 (2020)
Environmental toxicology and pharmacology, 30(2), 162-168 (2011-07-27)
Toxicity of nanoparticles depends on many factors including size, shape, chemical composition, surface area, surface charge, and others. In this study, we compared the toxicity of different sized-silver nanoparticles (AgNPs) which are being widely used in consumer products due to
Archives of pharmacal research, 34(2), 299-307 (2011-03-08)
The adverse effects of silver nanoparticles (AgNPs) to human and environment have not been known well, although AgNPs are now widely applied to consumer products. In this study, we investigated the inflammatory responses including cytokine production and gene expression in
Environmental toxicology and chemistry, 29(12), 2742-2750 (2010-10-05)
Relatively little is known about the behavior and toxicity of nanoparticles in the environment. Objectives of work presented here include establishing the toxicity of a variety of silver nanoparticles (AgNPs) to Daphnia magna neonates, assessing the applicability of a commonly
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service