Skip to Content
Merck
All Photos(1)

Documents

357324

Sigma-Aldrich

Iridium

foil, thickness 0.25 mm, 99.9% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ir
CAS Number:
Molecular Weight:
192.22
MDL number:
UNSPSC Code:
12141720
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.9% trace metals basis

form

foil

resistivity

4.71 μΩ-cm

thickness

0.25 mm

bp

4130 °C (lit.)

mp

2450 °C (lit.)

density

22.65 g/cm3 (lit.)

SMILES string

[Ir]

InChI

1S/Ir

InChI key

GKOZUEZYRPOHIO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Quantity

3.5 g = 25 × 25 mm

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 2

1 of 2

Shiguang Pan et al.
Organic letters, 15(8), 1902-1905 (2013-04-02)
A cationic Ir(I) complex-catalyzed O-to-N-alkyl migration in 2-alkoxypyridines bearing a secondary alkyl group on the oxygen atom by C-O bond cleavage is described. The present transformation gave various N-alkylpyridones in moderate to good yields. The addition of sodium acetate played
Rui Cao et al.
Journal of medicinal chemistry, 56(9), 3636-3644 (2013-04-19)
The cellular behavior and toxicity effect of organometallic complexes depend largely on their peripheral ligands. In this study, we have synthesized a series of novel luminescent cationic iridium(III) complexes by tuning the ancillary N(∧)N ligand based on a structure [Ir(ppy)2(N(∧)N)](+)
Hana Woo et al.
Journal of the American Chemical Society, 135(12), 4771-4787 (2013-03-06)
Despite the promising photofunctionalities, phosphorescent probes have been examined only to a limited extent, and the molecular features that provide convenient handles for controlling the phosphorescence response have yet to be identified. We synthesized a series of phosphorescence zinc sensors
M Y Zhang et al.
Optics express, 21 Suppl 1, A173-A178 (2013-02-15)
We have investigated the transport characteristics of red phosphorescent dye bis(1-(phenyl)isoquinoline) iridium (III) acetylanetonate (Ir(piq)₂acac) doped 4,4',4"-tri(N-carbazolyl)triphenylamine (TCTA), and found that the increasing doping ratio was facilitated to improve the ability of hole transporting. A high color rendering index (CRI)
José Luis Núñez-Rico et al.
Organic letters, 15(8), 2066-2069 (2013-04-12)
Iridium(I) complexes of enantiomerically pure phosphine-phosphite ligands ([Ir(Cl)(cod)(P-OP)]) efficiently catalyze the enantioselective hydrogenation of diverse C═N-containing heterocyclic compounds (benzoxazines, benzoxazinones, benzothiazinones, and quinoxalinones; 25 examples, up to 99% ee). A substrate-to-catalyst ratio as high as 2000:1 was reached.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service