Skip to Content
Merck
All Photos(3)

Documents

C24604

Sigma-Aldrich

3-Chlorobenzoic acid

ReagentPlus®, ≥99%

Synonym(s):

m-Chlorobenzoic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ClC6H4CO2H
CAS Number:
Molecular Weight:
156.57
Beilstein:
907218
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

product line

ReagentPlus®

Assay

≥99%

form

powder

mp

153-157 °C (lit.)

SMILES string

OC(=O)c1cccc(Cl)c1

InChI

1S/C7H5ClO2/c8-6-3-1-2-5(4-6)7(9)10/h1-4H,(H,9,10)

InChI key

LULAYUGMBFYYEX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Legal Information

ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

T Ledger et al.
Microbiology (Reading, England), 155(Pt 8), 2757-2765 (2009-05-09)
Cupriavidus necator JMP134(pJP4) is able to grow on 3-chlorobenzoate (3-CB), a model chloroaromatic pollutant. Catabolism of 3-CB is achieved via the expression of the chromosomally encoded benABCD genes and the tfd genes from plasmid pJP4. Since passive diffusion of benzoic
Jens Dittmann et al.
Chemosphere, 49(3), 297-306 (2002-10-05)
The capability of different white rot (WR, Heterobasidion annosum, Phanerochaete chrysosporium, Trametes versicolor) and ectomycorrhizal (ECM, Paxillus involutus, Suillus bovinus) fungal species to degrade different aromatic compounds and the absorption of 3-chlorobenzoic acid (3-CBA) by ECM pine seedlings was examined.
Jennifer G Becker et al.
Applied and environmental microbiology, 72(1), 449-456 (2006-01-05)
Lengthy adaptation periods in laboratory studies evaluating the potential for contaminant biodegradation in natural or engineered environments may indicate that the native microbial communities are not metabolizing the contaminants in situ. In this study, we characterized the adaptation period preceding
Ian L Pepper et al.
Environmental health perspectives, 110 Suppl 6, 943-946 (2003-03-14)
Soils co-contaminated with metals and organics present special problems for remediation. Metal contamination can delay or inhibit microbial degradation of organic pollutants such that for effective in situ biodegradation, bioaugmentation is necessary. We monitored the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D)
S Ramalingam et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 84(1), 210-220 (2011-10-14)
The FT-IR and FT-Raman spectra of 3-chlorobenzoic acid (3CBA) are recorded in the liquid state. The fundamental vibrational frequencies, intensity of vibrational bands and the optimized geometrical parameters of the compound are evaluated using HF and DFT (LSDA/B3LYP/B3PW91/MPW1PW91) methods with

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service