Skip to Content
Merck

Fluorogenic cephalosporin substrates for β-lactamase TEM-1.

Analytical biochemistry (2011-08-27)
Aleksey Rukavishnikov, Kyle R Gee, Iain Johnson, Schuyler Corry
ABSTRACT

Cephalosporin was used to synthesize soluble and precipitating fluorogenic β-lactam substrates that demonstrated differential catalytic hydrolysis by three different subtypes of β-lactamase: TEM-1 (class A), p99 (class C), and a Bacillus cereus enzyme sold by Genzyme (class B). The most successful soluble substrate contained difluorofluorescein (Oregon Green 488) ligated to two cephalosporin moieties that, therefore, required two turnovers to produce the fluorescent Oregon Green 488 leaving group. The bis-cephalosporin modification was required so that the final reaction product was the Oregon Green 488 carboxylic acid rather than a less bright phenolic adduct of the dye. Hydrolysis in pH 5.5 Mes and pH 7.2 phosphate-buffered saline (PBS) buffers was similar, but in pH 8.0 Tris the hydrolysis rate nearly doubled. Activity of the β-lactamases on the various substrates was shown to depend highly on the linker between the cephalosporin and the fluorophore, with an allyl linker promoting faster turnover than a phenol ether linker. Measured K(m) values for dichlorofluorescein and difluorofluorescein cephalosporin substrates were approximately the same as K(m) values for penicillin G and ampicillin found in the literature (~30-40μM).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2′,7′-Dichlorofluorescein, BioReagent, suitable for fluorescence, ≥90% (T)
Sigma-Aldrich
2′,7′-Dichlorofluorescein, suitable for use as an indicator in chloride titration, ~90% (TLC), powder
Sigma-Aldrich
2′,7′-Dichlorofluorescein, ACS reagent