Skip to Content
Merck
All Photos(1)

Key Documents

96662

Sigma-Aldrich

Trihexyltetradecylphosphonium bromide

≥95%

Synonym(s):

Tetradecyltrihexylphosphonium bromide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CH3(CH2)5]3P(Br)(CH2)13CH3
CAS Number:
Molecular Weight:
563.76
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Assay

≥95%
≥95.0% (T)

form

solid

density

0.96 g/mL at 20 °C (lit.)

functional group

phosphine

SMILES string

[Br-].CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC

InChI

1S/C32H68P.BrH/c1-5-9-13-17-18-19-20-21-22-23-24-28-32-33(29-25-14-10-6-2,30-26-15-11-7-3)31-27-16-12-8-4;/h5-32H2,1-4H3;1H/q+1;/p-1

InChI key

RJELOMHXBLDMDB-UHFFFAOYSA-M

Application

Reactant for:
  • Preparation of ionic liquids via solvent-free anion metathesis reaction
  • Preparation of tetraalkylphosphonium tungstophosphate and isopolytungstate Lindquist cluster anion
Trihexyltetradecylphosphonium bromide is a phosphonium-based ionic liquid that can be used as a recyclable reaction medium for Heck cross-coupling reactions. It can also be used to prepare supported liquid membranes (SLMs) for gas separation processes.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids.
Cserjesi P, et al.
Journal of Membrane Science, 349(1), 6-11 (2010)
Heck reactions of aryl halides in phosphonium salt ionic liquids: library screening and applications.
Gerritsma DA, et al.
Tetrahedron Letters, 45(41), 7629-7631 (2004)
Francisco José Alguacil et al.
Scientific reports, 10(1), 13868-13868 (2020-08-19)
By reaction of HCl and the tertiary amine HA324, an ionic liquid denoted HA324H+Cl- was generated and used in the transport of indium(III) from HCl solutions. Metal transport experiments were carried out with a supported liquid membrane, and several variables
Guokai Cui et al.
Chemistry, an Asian journal, 12(21), 2863-2872 (2017-08-26)
A new strategy involving the computer-assisted design of substituted imidazolate-based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO
Karolina Matuszek et al.
Molecules (Basel, Switzerland), 25(1) (2019-12-28)
Low solubility of terephthalic acid in common solvents makes its industrial production very difficult and not environmentally benign. Ionic liquids are known for their extraordinary solvent properties, with capability to dissolve a wide variety of materials, from common solvents to

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service