Skip to Content
Merck
All Photos(1)

Key Documents

86370

Sigma-Aldrich

Tellurium dioxide

≥97.0%

Synonym(s):

Telluria, Tellurium oxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
TeO2
CAS Number:
Molecular Weight:
159.60
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥97.0%

form

powder

mp

733 °C (lit.)

density

5.67 g/mL at 25 °C (lit.)

SMILES string

O=[Te]=O

InChI

1S/O2Te/c1-3-2

InChI key

LAJZODKXOMJMPK-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Tellurium dioxide (TeO2) is a ceramic material that can be used as a semiconducting oxide. It has a wide band gap and high mobility as determined by density functional theory (DFT) calculations. In bulk quantity, it exists in two polymorphs which include tetragonal α-TeO2 and orthorhombic β-TeO2.

Application

TeO2 can be potentially used in medical imaging and industrial monitoring processes.

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Aquatic Chronic 2 - Lact. - Repr. 1B - Skin Sens. 1B

Storage Class Code

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Gamma radiation-induced changes in the electrical and optical properties of tellurium dioxide thin films
Arshak K and Korostynska O
IEEE Sensors Journal, 3(6), 717-721 (2003)
Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy
Guo S, et al.
Nanoscale, 10(18), 8397-8403 (2018)
R Balda et al.
Optics express, 17(11), 8781-8788 (2009-05-26)
In this work, we report the near-infrared emission properties of Tm(3+)-Er(3+) codoped tellurite TeO(2)-WO(3)-PbO glasses under 794 nm excitation. A broad emission from 1350 to 1750 nm corresponding to the Tm(3+) and Er(3+) emissions is observed. The full width at
Qiu-Hua Nie et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 61(8), 1939-1943 (2005-05-03)
The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra
Ganxin Chen et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 72(4), 734-737 (2008-12-30)
We report on spectroscopic properties and energy transfer of Tm(3+)/Ho(3+)-codoped tungsten tellurite glasses for 1.47microm amplifier. Fluorescence spectra and the analysis of energy transfer indicate that Ho(3+) is an excellent codopant for 1.47microm emission. Comparing with other tellurite glasses, the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service