Skip to Content
Merck
All Photos(1)

Documents

808253

Sigma-Aldrich

Zinc oxide nanoparticle ink

2.5 wt. %, viscosity 2.1 cP, work function -3.9eV

Synonym(s):

Avantama N-11, Nanograde N-11, ZnO ink, ZnO nanoparticle ink, zinc oxide dispersion, zinc oxide suspension

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352103
NACRES:
NA.23

Quality Level

form

dispersion

concentration

2.5 wt. % (crystalline ZnO in isopropanol)

work function

-3.7--4.1 eV

color

translucent brownish

particle size

8-16 nm

viscosity

1.6-2.6 cP

Looking for similar products? Visit Product Comparison Guide

Application

ZnO nanoparticle ink is for spin-coating and doctor blading for the use as electron transport layer in printed electronics. ZnO nanoparticle ink is universally applicable in normal and inverted architecture.

Preparation Note

  • Storage: In dark at room temperature.
  • Prior to application: Shake, ultrasonicate with sonic horn and (optionally) filter through 0.45μm PTFE filter.
  • Post-treatment: Annealing of deposited ZnO films at 80°C - 120°C.

Legal Information

Product of Avantama Ltd.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Chronic 2 - Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 2

Flash Point(F)

57.2 °F

Flash Point(C)

14 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Articles

Find advantages of inorganic interface layer inks for organic electronic & other applications.

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service