Skip to Content
Merck
All Photos(3)

Documents

203424

Sigma-Aldrich

Indium(III) oxide

99.998% trace metals basis

Synonym(s):

Diindium trioxide, Indium sesquioxide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
In2O3
CAS Number:
Molecular Weight:
277.63
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

<0.01 mmHg ( 25 °C)

Assay

99.998% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: indium

density

7.18 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[In]O[In]=O

InChI

1S/2In.3O

InChI key

SHTGRZNPWBITMM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

  • Synthesis and Characterization: The development of gold nanoclusters on the surface of tin and indium oxide films, synthesizing new materials for advanced applications (Korotcenkov et al., 2014).
  • Photocatalysis: Using nitrogen/sulfur-codoped carbon-coated indium oxide nanoparticles as excellent photocatalysts, providing insights into environmental and energy applications (Sun et al., 2019).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ilan Jen-La Plante et al.
Small (Weinheim an der Bergstrasse, Germany), 9(1), 56-60 (2012-11-06)
Nano popcorn: a new formation mechanism for the synthesis of hollow metal oxide nanoparticles through a melt fracture mechanism. The hollow nanoparticles are formed via brittle fracture following the generation of tensile stresses arising due to liquid-phase thermal expansion of
Kelvin H L Zhang et al.
ACS nano, 6(8), 6717-6729 (2012-06-30)
The growth of In(2)O(3) on cubic Y-stabilized ZrO(2)(001) by molecular beam epitaxy leads to formation of nanoscale islands which may tilt relative to the substrate in order to help accommodate the 1.7% tensile mismatch between the epilayer and the substrate.
Yiping Fang et al.
Langmuir : the ACS journal of surfaces and colloids, 27(23), 14091-14095 (2011-10-21)
In(2)O(3)@SiO(2) core-shell nanoparticles were prepared using an organic solution synthesis approach and reverse-microemulsion technique. In order to explore the availability of various silica encapsulations, a partial phase diagram for this ternary system consisting of hexane/cyclohexane (1:29 wt), surfactant (polyoxyethylene(5)nonylphenyl ether
Jiefu Yin et al.
Inorganic chemistry, 51(12), 6529-6536 (2012-06-06)
We report here for the first time the hollow, metastable, single-crystal, rhombohedral In(2)O(3) (rh-In(2)O(3)) nanocrystals synthesized by annealing solvothermally prepared InOOH solid nanocrystals under ambient pressure at 400 °C, through a mechanism of the Kirkendall effect, in which pore formation
Xiaoyun Li et al.
Environmental science & technology, 46(10), 5528-5534 (2012-04-12)
Perfluorooctanoic acid (C(7)F(15)COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO(2)-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first

Articles

Review the potential of self-assembled multilayer gate dielectric films fabricated from silane precursors for organic, inorganic, and transparent TFT and for TFT circuitry and OLED displays.

Review the potential of self-assembled multilayer gate dielectric films fabricated from silane precursors for organic, inorganic, and transparent TFT and for TFT circuitry and OLED displays.

Review the potential of self-assembled multilayer gate dielectric films fabricated from silane precursors for organic, inorganic, and transparent TFT and for TFT circuitry and OLED displays.

Review the potential of self-assembled multilayer gate dielectric films fabricated from silane precursors for organic, inorganic, and transparent TFT and for TFT circuitry and OLED displays.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service