M0644
Minimum Essential Medium Eagle
Alpha Modification, with L-glutamine, ribonucleosides and deoxyribonucleosides, without sodium bicarbonate, powder, suitable for cell culture
Synonym(s):
MEM
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Quality Level
form
powder
technique(s)
cell culture | mammalian: suitable
components
NaHCO3: no
L-glutamine: yes
phenol red: yes
HEPES: no
sodium pyruvate: yes
shipped in
ambient
storage temp.
2-8°C
Looking for similar products? Visit Product Comparison Guide
General description
Minimum Essential Medium (MEM) is a synthetic cell culture media developed by Harry Eagle. This medium has higher concentrations of amino acids so the medium more closely approximates the protein composition of cultured mammalian cells. Optional supplementation of non-essential amino acids to this formulation that incorporates either Hanks′ or Earle′s salts has broadened the usage of this medium. The α modification of MEM with Earle′s balanced salts also known as αMEM, contains non-essential amino acids, sodium pyruvate, and additional vitamins.
Application
Minimum essential medium Eagle has been used to:
- maintain natural killer (NK) cell lines
- culture Leishmania donovani strains
- culture epidermal neural crest stem cells (EPI-NCSCs) from the bulge of rat hair follicles
Quantity
Formulated to contain 10.1 grams of powder per liter of medium.
Reconstitution
Supplement with 2.2 g/L sodium bicarbonate.
also commonly purchased with this product
Product No.
Description
Pricing
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Skin Sens. 1
Storage Class Code
11 - Combustible Solids
WGK
WGK 1
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Cell death & disease, 5, e1304-e1304 (2014-06-27)
Recent studies suggested that the post-natal mesothelium retain differentiative potential of the embryonic mesothelium, which generates fibroblasts and vascular smooth muscle cells (VSMCs), in developing coelomic organs via epithelial-to-mesenchymal transition (EMT). Whether adult mesothelial cells (MCs) are able to give
Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie, 79(5), 328-336 (2018-07-18)
Miniscrews are an important choice for orthodontic anchorage. Yet reports on failures do exist, and attempts have been made to elucidate the causes. Clinical outcomes may be compromised not only by the mechanical implications of miniscrew design and the location
PLoS neglected tropical diseases, 15(7), e0009552-e0009552 (2021-07-20)
Visceral leishmaniasis (VL) is a zoonotic protozoal vector-borne disease that is a major public health challenge. In Argentina, canine (CVL) and human visceral leishmaniasis (HVL) have recently emerged. There is a lack of standardised diagnostic tests for CVL, which hinders
Bone, 115, 68-82 (2017-12-01)
The discovery of osteocalcin, a protein synthetized by osteoblasts, as a hormone that has positive effects on insulin resistance, contributed to support the concept of bone as an endocrine organ. However, very little is known about the molecular pathways involved
Nanomaterials (Basel, Switzerland), 10(9) (2020-09-02)
Bone-tissue regeneration induced by biomimetic bioactive materials is the most promising approach alternative to the clinical ones used to treat bone loss caused by trauma or diseases such as osteoporosis. The goal is to design nanostructured bioactive constructs able to
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service