콘텐츠로 건너뛰기
Merck
  • The soft mechanical signature of glial scars in the central nervous system.

The soft mechanical signature of glial scars in the central nervous system.

Nature communications (2017-03-21)
Emad Moeendarbary, Isabell P Weber, Graham K Sheridan, David E Koser, Sara Soleman, Barbara Haenzi, Elizabeth J Bradbury, James Fawcett, Kristian Franze
초록

Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-Chicken IgY (H+L), highly cross-adsorbed, CF 633 antibody produced in donkey, ~2 mg/mL, affinity isolated antibody
Sigma-Aldrich
Triton X-100, laboratory grade