콘텐츠로 건너뛰기
Merck
  • Polymeric Nanoformulation of Zoledronic Acid Rescues Osteoblasts from the Harmful Effect of its Native Form: An In Vitro Investigation of Cytotoxic Potential on Osteoblasts and Osteosarcoma Cells.

Polymeric Nanoformulation of Zoledronic Acid Rescues Osteoblasts from the Harmful Effect of its Native Form: An In Vitro Investigation of Cytotoxic Potential on Osteoblasts and Osteosarcoma Cells.

Macromolecular bioscience (2023-06-29)
Pratigyan Dash, Sasmita Samal, Gyanendra Prasad Panda, Anna Maria Piras, Mamoni Dash
초록

Osteosarcoma (OS) is a malignant tumor, fatal for pediatric patients who do not respond to chemotherapy, alternative therapies and drugs can provide better outcomes. Zoledronic acid (Zol) belonging to the class of bisphosphonates (BPs) has a direct antitumor ability to prevent Ras GTPases modification and stimulate apoptosis. Despite advances in maintaining balance in skeletal events and direct anticancer properties, Zol causes cytotoxicity to normal healthy pre-osteoblast cells, hampering mineralization and differentiation. The study reports the preparation and evaluation of a nanoformulation that can diminish the existing drawbacks of native Zol. The cytotoxic effect is evaluated on bone cancer cells and healthy bone cells with three different cell lines namely, K7M2 (mouse OS cell line), SaOS2 (human OS cell line), and MC3T3E1 (healthy cell counterpart). It is observed that Zol nanoformulation is uptaken more (95%) in K7M2 whereas in MC3T3E1, the percent population internalizing nanoparticles (NPs) is 45%. Zol has a sustained release of 15% after 96 h from the NP which leads to a rescuing effect on the normal pre-osteoblast cells. In conclusion, it can be stated that Zol nanoformulation can be used as a good platform for a sustained release system with minimum side effects to normal bone cells.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Ibandronate sodium salt, ≥97% (NMR), solid
Sigma-Aldrich
Pamidronate disodium salt hydrate, ≥95% (NMR), solid