์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
Merck
  • A newly identified CG301269 improves lipid and glucose metabolism without body weight gain through activation of peroxisome proliferator-activated receptor alpha and gamma.

A newly identified CG301269 improves lipid and glucose metabolism without body weight gain through activation of peroxisome proliferator-activated receptor alpha and gamma.

Diabetes (2011-01-29)
Hyun Woo Jeong, Joo-Won Lee, Woo Sik Kim, Sung Sik Choe, Kyung-Hee Kim, Ho Seon Park, Hyun Jung Shin, Gha Young Lee, Dongkyu Shin, Hanjae Lee, Jun Hee Lee, Eun Bok Choi, Hyeon Kyu Lee, Heekyoung Chung, Seung Bum Park, Kyong Soo Park, Hyo-Soo Kim, Seonggu Ro, Jae Bum Kim
์ดˆ๋ก

Peroxisome proliferator-activated receptor (PPAR)-ฮฑ/ฮณ dual agonists have been developed to alleviate metabolic disorders. However, several PPARฮฑ/ฮณ dual agonists are accompanied with unwanted side effects, including body weight gain, edema, and tissue failure. This study investigated the effects of a novel PPARฮฑ/ฮณ dual agonist, CG301269, on metabolic disorders both in vitro and in vivo. Function of CG301269 as a PPARฮฑ/ฮณ dual agonist was assessed in vitro by luciferase reporter assay, mammalian one-hybrid assay, and analyses of PPAR target genes. In vitro profiles on fatty acid oxidation and inflammatory responses were acquired by fatty acid oxidation assay and quantitative (q)RT-PCR of proinflammatory genes. In vivo effect of CG301269 was examined in db/db mice. Total body weight and various tissue weights were measured, and hepatic lipid profiles were analyzed. Systemic glucose and insulin tolerance were measured, and the in vivo effect of CG301269 on metabolic genes and proinflammatory genes was examined by qRT-PCR. CG301269 selectively stimulated the transcriptional activities of PPARฮฑ and PPARฮณ. CG301269 enhanced fatty acid oxidation in vitro and ameliorated insulin resistance and hyperlipidemia in vivo. In db/db mice, CG301269 reduced inflammatory responses and fatty liver, without body weight gain. We demonstrate that CG301269 exhibits beneficial effects on glucose and lipid metabolism by simultaneous activation of both PPARฮฑ and PPARฮณ. Our data suggest that CG301269 would be a potential lead compound against obesity and related metabolic disorders.

MATERIALS
์ œํ’ˆ ๋ฒˆํ˜ธ
๋ธŒ๋žœ๋“œ
์ œํ’ˆ ์„ค๋ช…

Sigma-Aldrich
Trichloroacetic acid, ACS reagent, for the determination of Fe in blood according to Heilmeyer, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, โ‰ฅ99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
Trichloroacetic acid, BioXtra, ≥99.0%
Sigma-Aldrich
Trichloroacetic acid, suitable for electrophoresis, suitable for fixing solution (for IEF and PAGE gels), ≥99%
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, ≥99.0%
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, โ‰ฅ99.5%
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, Hybri-Maxโ„ข, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, โ‰ฅ99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, โ‰ฅ99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, โ‰ฅ99.5% (GC)
Sigma-Aldrich
Trichloroacetic acid, ≥99.0% (titration)
Sigma-Aldrich
Trichloroacetic acid, BioUltra, ≥99.5% (T)
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D-Glucose-2-d, 98 atom % D, 99% (CP)
Sigma-Aldrich
L-(โˆ’)-Glucose, โ‰ฅ99%