콘텐츠로 건너뛰기
Merck
  • Akt signaling pathway: a target for radiosensitizing human malignant glioma.

Akt signaling pathway: a target for radiosensitizing human malignant glioma.

Neuro-oncology (2010-04-22)
Emmanuel Chautard, Gaëlle Loubeau, Andreï Tchirkov, Jacques Chassagne, Claudine Vermot-Desroches, Laurent Morel, Pierre Verrelle
초록

Radiation therapy plays a central role in the treatment of glioblastoma, but it is not curative due to the high tumor radioresistance. Phosphatidyl-inositol 3-kinase/protein kinase B (Akt) and Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways serve to block the apoptosis process, keeping cells alive in very toxic environments such as chemotherapy or ionizing radiation. In the present study, from a panel of 8 human malignant glioma cell lines, investigations on the relationship between intrinsic radioresistance and Akt or STAT3 basal activation were done. Secondly, the impact of down-modulation of Akt or STAT3 signaling on in vitro intrinsic radiosensitivity was evaluated. Using a clonogenic cell survival assay, our results revealed a significant correlation between the basal Akt activation and the surviving fraction at 2 Gy (SF2). In contrast, no correlation was found between STAT3 activation and SF2. According to this, down-modulation of Akt with a specific chemical inhibitor (Akt inhibitor IV) demonstrated a significant enhancement of radiation sensitivity on glioma cells in a clonogenic survival assay. On the contrary, down-modulation of STAT3 signaling with a specific chemical inhibitor (JSI-124) or a neutralizing gp130 antibody failed to radiosensitize glioma cells. These data indicate that the Akt intercept node could be a more relevant therapeutic target than STAT3 for radiosensitizing human malignant glioma.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
5-(2-Benzothiazolyl)-3-ethyl-2-[2-(methylphenylamino)ethenyl]-1-phenyl-1H-benzimidazolium iodide, ≥98% (HPLC)