추천 제품
분석
≥97.0% (TLC)
저장 온도
−20°C
SMILES string
[Na+].OC[C@@H](O)[C@H](OS([O-])(=O)=O)[C@H](O)[C@@H](O)C=O
InChI
1S/C6H12O9S.Na/c7-1-3(9)5(11)6(4(10)2-8)15-16(12,13)14;/h1,3-6,8-11H,2H2,(H,12,13,14);/q;+1/p-1/t3-,4+,5+,6-;/m0./s1
InChI key
PPFRJSVPFMKACS-NQZVPSPJSA-M
유사한 제품을 찾으십니까? 방문 제품 비교 안내
애플리케이션
D-Galactose 4-sulfate (Gal-4S) may be used to help differentiate glycan sulfatide recognition/binding sites and to study the structure and biochemisty of carrageenans.
포장
Bottomless glass bottle. Contents are inside inserted fused cone.
시험 성적서(COA)
제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.
Carbohydrate research, 344(6), 788-794 (2009-03-10)
The composition, structure, and thermal stability of carrageenans from unattached Coccotylus truncatus (the Baltic Sea, Estonia) were investigated. The complex polysaccharide was characterized by (13)C NMR and FTIR spectroscopy, ICP-OES and gel permeation chromatography methods. The main components of C.
European journal of biochemistry, 233(2), 687-693 (1995-10-15)
The carbohydrate-protein linkage region of a chondroitin 4-sulfate chain attached to urinary trypsin inhibitor (UTI) was isolated from human urine and characterized structurally. The chondroitin 4-sulfate chain was released from UTI by beta-elimination using alkaline NaBH4 then digested with chondroitinase
The Journal of biological chemistry, 275(45), 35499-35505 (2000-08-10)
iota-Carrageenases are polysaccharide hydrolases that cleave the beta-1,4 linkages between the d-galactose-4-sulfate and 3, 6-anhydro-d-galactose-2-sulfate residues in the red algal galactans known as iota-carrageenans. We report here on the purification of iota-carrageenase activity from the marine bacterium Zobellia galactanovorans and
PloS one, 4(2), e4487-e4487 (2009-02-27)
The first step in the pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections is adhesion of the bacterium to the small intestinal epithelium. Adhesion of ETEC is mediated by a number of antigenically distinct colonization factors, and among these, one of
Virulence, 11(1), 381-390 (2020-04-05)
The ability to adhere via colonization factors to specific receptors located on the intestinal mucosa is a key virulence factor in enterotoxigenic Escherichia coli (ETEC) pathogenesis. Here, the potential glycosphingolipid receptors of the novel human ETEC colonization factor CS30 were
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.