추천 제품
Grade
for electrochemical analysis
Quality Level
분석
≥99.0% (T)
≥99.0%
형태
crystals
mp
≥300 °C (lit.)
solubility
acetonitrile: 0.1 g/mL, clear, colorless
SMILES string
F[B-](F)(F)F.CC[N+](CC)(CC)CC
InChI
1S/C8H20N.BF4/c1-5-9(6-2,7-3)8-4;2-1(3,4)5/h5-8H2,1-4H3;/q+1;-1
InChI key
XJRAKUDXACGCHA-UHFFFAOYSA-N
유사한 제품을 찾으십니까? 방문 제품 비교 안내
일반 설명
Visit our Sensor Applications portal to learn more.
애플리케이션
- High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon: This study discusses the use of Tetraethylammonium tetrafluoroborate in enhancing the performance of high-rate electrochemical capacitors, focusing on ordered mesoporous silicon carbide-derived carbon structures (Korenblit et al., 2010).
- Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes: The application of Tetraethylammonium tetrafluoroborate in electrolyte solutions for supercapacitors, demonstrating how it facilitates the exact matching of pore sizes in graphite oxide electrodes for optimal ion intercalation (Sun et al., 2018).
- A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes: Describes a modeling approach that incorporates the characteristics of Tetraethylammonium tetrafluoroborate in various carbon materials and electrolytes, enhancing the understanding and design of supercapacitors (Huang et al., 2008).
- Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage: Research on utilizing Tetraethylammonium tetrafluoroborate in novel sub-micrometer novolac-derived carbon beads, which significantly boost the efficiency and energy storage capacity of supercapacitors (Krüner et al., 2016).
- Biomass-based Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on the Electrochemical Performance: Explores the efficacy of Tetraethylammonium tetrafluoroborate in enhancing the electrochemical performance of biomass-derived hierarchical porous carbons in various electrolyte environments (Chen et al., 2019).
기타 정보
Supporting electrolyte
신호어
Warning
유해 및 위험 성명서
Hazard Classifications
Acute Tox. 4 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
표적 기관
Respiratory system
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
개인 보호 장비
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
이미 열람한 고객
Tetrahedron, 51, 6411-6411 (1995)
J. Chem. Soc. Perkin Trans. II, 2039-2039 (1994)
Scientific reports, 6, 39689-39689 (2016-12-22)
Graphene film has been demonstrated as promising active materials for electric double layer capacitors (EDLCs), mainly due to its excellent mechanical flexibility and freestanding morphology. In this work, the distribution and variation pattern of electrolyte ions in graphene-film based EDLC
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.