콘텐츠로 건너뛰기
Merck
모든 사진(1)

문서

917737

Sigma-Aldrich

NanoFabTx materials screening kit

for synthesis of polymeric nanoparticles

동의어(들):

Non-PEGylated drug delivery formulation, PCL, PLA, PLGA

로그인조직 및 계약 가격 보기


About This Item

UNSPSC 코드:
12161503
NACRES:
NA.23

설명

Kit components :
PLGA-Nano (907782-500mg)
PLGA-Nano75 (916382-500mg)
PLA-Nano (910996-500mg)
PCL-Nano (916382-500mg)
Stabilizer - P (913448-10g)

Quality Level

응용 분야

advanced drug delivery

일반 설명

NanoFabTx formulation kits and lipid mixes enable users to encapsulate a wide variety of therapeutic drug molecules for targeted or extended drug delivery without the need for lengthy trial-and-error optimization. NanoFabTx kits provide an easy to use toolkit for encapsulating a variety of therapeutics in nanoparticles, microparticles, or liposomes. Drug encapsulated particles synthesized with the NanoFabTx kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery and vaccine delivery.

애플리케이션

The NanoFabTx materials screening kit, for synthesis of polymeric nanoparticles, is a ready-to-use nanoformulation kit for the synthesis of nanoparticles for drug delivery. Poly(lactic-co-glycolic acid) (PLGA), poly(D,L-lactic acid) (PLA) and polycaprolactone (PCL) are biocompatible and biodegradable polymers that have been approved by the FDA for biomedical and pharmaceutical applications. This kit includes properly selected PLGA, PLA, and PCL polymers and stabilizer, allowing for rapid screening of optimal materials for enhanced drug loading and controlled drug release.

특징 및 장점

  • Ready-to-use polymer drug formulation screening kit for non-PEGylated nanoparticles
  • Choose from either nanopreciptiation or microfluidics-based protocols
  • Create specifically sized, biodegradable, PLGA, PLA, or PCL nanoparticles
  • Maximize the encapsulation of hydrophobic drugs
  • Four different non-PEGylated polymers are included

제조 메모

Comprehensive protocols for nanoparticle synthesis methods are included:
  • A nanoprecipitation protocol to prepare drug-encapsulated nanoparticles in standard laboratory glassware.
  • A microfluidics protocol using commercial platforms or syringe pumps.

The microfluidics protocol uses NanoFabTx device kits (911593), which provide the microfluidics chips, fittings, and tubing required to get started with microfluidics-based synthesis (compatible microfluidics system or syringe pump required).

For more information, please refer to the protocol under the document section of this page.

법적 정보

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids

WGK

WGK 3


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

S Freiberg et al.
International journal of pharmaceutics, 282(1-2), 1-18 (2004-09-01)
Polymer microspheres can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. Since the rate of drug release
C Thomasin et al.
Journal of pharmaceutical sciences, 87(3), 269-275 (1998-04-02)
Phase separation (frequently called coacervation) of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) is a classical method for drug microencapsulation. Here, attempts have been made to describe this process in the light of thermodynamics. Different PLA/PLGAs were dissolved in either dichloromethane or
Nazila Kamaly et al.
Chemical Society reviews, 41(7), 2971-3010 (2012-03-06)
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery
Verónica Lassalle et al.
Macromolecular bioscience, 7(6), 767-783 (2007-06-02)
The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices
Byung Kook Lee et al.
Advanced drug delivery reviews, 107, 176-191 (2016-06-06)
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are

문서

NanoFabTX kits enable precise drug delivery with lipid nanoparticles and liposomes for mRNA and nucleic acids.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.