콘텐츠로 건너뛰기
Merck
모든 사진(1)

문서

795534

Sigma-Aldrich

Graphene oxide nanocolloids

greener alternative

2 mg/mL, dispersion in H2O

동의어(들):

NGO, nano-GO

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
CxHyOz
UNSPSC 코드:
12352103
NACRES:
NA.23

형태

dispersion in H2O

Quality Level

환경친화적 대안 제품 특성

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

농도

2 mg/mL

환경친화적 대안 카테고리

일반 설명

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". High concentrated graphene oxide sheets provide the prerequisite viscosity to bind the electrode materials together and enable 3D printing. Using water as a green solvent makes this aqueous ink system feasible for processing and drying safety and low cost. Click here for more information.

애플리케이션

  • Single-layer graphene oxide sheets
  • Possible applications:
  • Cellular Imaging
  • Drug Delivery
  • Nanomedicine
  • Cancer therapy

Storage Class Code

10 - Combustible liquids

WGK

WGK 2

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Felix Laguna-Teno et al.
Frontiers in microbiology, 11, 1943-1943 (2020-08-28)
Graphene oxide has become a very appealing nanomaterial during the last years for many different applications, but its possible impact in different biological systems remains unclear. Here, an assessment to understand the toxicity of different commercial graphene oxide nanomaterials on
Ho Sang DJung et al.
ACS nano, 8(1), 260-268 (2014-01-05)
Melanoma skin cancer is one of the most dangerous skin cancers and the main cause of skin-cancer-related mortality. Hyaluronic acid (HA) has been used as an effective transdermal delivery carrier of chemical drugs and biopharmaceuticals. In this work, a nanographene
Brixhilda Domi et al.
International journal of molecular sciences, 21(1) (2020-01-02)
The ability of commercial monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) to interact with different unicellular systems and biomolecules was studied by analyzing the response of human alveolar carcinoma epithelial cells, the yeast Saccharomyces cerevisiae and the bacteria
Jiayan Luo et al.
Journal of the American Chemical Society, 132(50), 17667-17669 (2010-11-26)
Graphene oxide (GO) nanocolloids-sheets with lateral dimension smaller than 100 nm-were synthesized by chemical exfoliation of graphite nanofibers, in which the graphene planes are coin-stacked along the length of the nanofibers. Since the upper size limit is predetermined by the
Zhuang Liu et al.
Journal of the American Chemical Society, 130(33), 10876-10877 (2008-07-30)
It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a

문서

Graphene oxide, a monomolecular layer of graphite with oxygen functionalities, holds unique properties valuable for various applications in materials science.

CRISPR/Cas9 delivery via nonviral nanoparticles shows promising advancements for gene editing in disease treatment.

Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.

Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering

모두 보기

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.