Skip to Content
Merck
  • Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins.

Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins.

Molecular pharmaceutics (2015-01-13)
W F Tonnis, M A Mensink, A de Jager, K van der Voort Maarschalk, H W Frijlink, W L J Hinrichs
ABSTRACT

Protein-based biopharmaceuticals are generally produced as aqueous solutions and stored refrigerated to obtain sufficient shelf life. Alternatively, proteins may be freeze-dried in the presence of sugars to allow storage stability at ambient conditions for prolonged periods. However, to act as a stabilizer, these sugars should remain in the glassy state during storage. This requires a sufficiently high glass transition temperature (Tg). Furthermore, the sugars should be able to replace the hydrogen bonds between the protein and water during drying. Frequently used disaccharides are characterized by a relatively low Tg, rendering them sensitive to plasticizing effects of residual water, which strongly reduces the Tg values of the formulation. Larger sugars generally have higher Tgs, but it is assumed that these sugars are limited in their ability to interact with the protein due to steric hindrance. In this paper, the size and molecular flexibility of sugars was related to their ability to stabilize proteins. Four diverse proteins varying in size from 6 kDa to 540 kDa were freeze-dried in the presence of different sugars varying in size and molecular flexibility. Subsequently, the different samples were subjected to an accelerated stability test. Using protein specific assays and intrinsic fluorescence, stability of the proteins was monitored. It was found that the smallest sugar (disaccharide trehalose) best preserved the proteins, but also that the Tg of the formulations was only just high enough to maintain sufficient vitrification. When trehalose-based formulations are exposed to high relative humidities, water uptake by the product reduces the Tgs too much. In that respect, sugars with higher Tgs are desired. Addition of polysaccharide dextran 70 kDa to trehalose greatly increased the Tg of the formulation. Moreover, this combination also improved the stability of the proteins compared to dextran only formulations. The molecularly flexible oligosaccharide inulin 4 kDa provided better stabilization than the similarly sized but molecularly rigid oligosaccharide dextran 6 kDa. In conclusion, the results of this study indicate that size and molecular flexibility of sugars affect their ability to stabilize proteins. As long as they maintain vitrified, smaller and molecularly more flexible sugars are less affected by steric hindrance and thus better capable at stabilizing proteins.

MATERIALS
Product Number
Brand
Product Description

USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ammonium sulfate, ACS reagent, ≥99.0%
Sucrose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Phenol, natural, 97%, FG
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Supelco
Phenol, PESTANAL®, analytical standard
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Ammonium sulfate, 99.999% trace metals basis
Sigma-Aldrich
Ammonium-14N2 sulfate, 99.99 atom % 14N
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Phenol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)