Skip to Content
Merck
  • Markers of dopamine depletion and compensatory response in striatum and cerebrospinal fluid.

Markers of dopamine depletion and compensatory response in striatum and cerebrospinal fluid.

Journal of neural transmission. Parkinson's disease and dementia section (1995-01-01)
D A Loeffler, P A LeWitt, A J DeMaggio, P L Juneau, P E Milbury, W R Matson
ABSTRACT

Though depletion of CSF homovanillic acid (HVA) concentration has often been regarded as a direct indicator of dopamine (DA) deficiency in Parkinson's Disease (PD), CSF HVA is normal in mildly affected patients. To explore why, we measured DA and its metabolites in striatum and CSF in rabbits receiving reserpine for 5 days. Reserpine, which depletes striatal DA by disrupting vesicular storage of the neurotransmitter, results in a compensatory increase of DA turnover. In response to a 96% depletion of striatal DA, its catabolic intermediates 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) decreased 64% and 92% in striatum, although the endproduct, HVA, was unchanged. In contrast, CSF concentrations of HVA and DOPAC increased significantly, though 3-MT and levodopa (LD) were unaltered. A 5-fold rise in striatal LD concentration after reserpine-induced DA depletion provided evidence for enhanced DA synthesis. As in PD, the compensatory increase of DA synthesis after reserpine administration confounds the ability of CSF HVA to reflect DA depletion.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Sigma-Aldrich
Zinc, shot, 5 mm, 99.999% trace metals basis
Sigma-Aldrich
Zinc, foil, thickness 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Strontium, dendritic pieces, purified by distillation, 99.9% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Cobalt, rod, diam. 5.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Molybdenum, powder, 1-5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Cobalt, foil, thickness 1.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Sigma-Aldrich
Tungsten, powder (monocrystalline), 0.6-1 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Molybdenum, powder, <150 μm, 99.99% trace metals basis
Sigma-Aldrich
Cobalt, powder, <150 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Cobalt, wire, diam. 1.0 mm, 99.995% trace metals basis
Sigma-Aldrich
Tin, powder, <150 μm, 99.5% trace metals basis
Sigma-Aldrich
Cobalt, powder, 2 μm particle size, 99.8% trace metals basis
Sigma-Aldrich
Magnesium, grit, ≥99.0% (KT)
Sigma-Aldrich
Copper, turnings, purum p.a., ≥99.0%
Sigma-Aldrich
L-Cystine, ≥99.7% (TLC)
Sigma-Aldrich
Aluminum, powder, ≥91% (complexometric)
Sigma-Aldrich
Magnesium, purum, for Grignard reactions, ≥99.5%, turnings
Sigma-Aldrich
Copper, foil, thickness 1.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Magnesium, 20-230 mesh, reagent grade, 98%
Sigma-Aldrich
Chromium, chips, 99.995% trace metals basis
Sigma-Aldrich
Magnesium, chips, 6-35 mesh, 99.98% trace metals basis
Sigma-Aldrich
Magnesium, turnings, 5-25 mm, 99.95% trace metals basis
Sigma-Aldrich
Vanadium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Zirconium, powder, −100 mesh